满分5 > 高中数学试题 >

已知椭圆C的中心在原点,焦点F1,F2在x轴上,离心率,且经过点. (1)求椭圆...

已知椭圆C的中心在原点,焦点F1,F2在x轴上,离心率manfen5.com 满分网,且经过点manfen5.com 满分网
(1)求椭圆C的方程;
(2)若直线l经过椭圆C的右焦点F2,且
与椭圆C交于A,B两点,使得|F1A|,|AB|,|BF1|依次成等差数列,求直线l的方程.

manfen5.com 满分网
(1)先设椭圆C的方程根据离心率和点M求得a和b,进而可得答案. (2)设直线l的方程为,代入(1)中所求的椭圆C的方程,消去y,设A(x1,y1),B(x2,y2),进而可得到x1+x2和x1•x2的表达式,根据F1A|+|BF1|=2|AB|求得k,再判断直线l⊥x轴时,直线方程不符合题意.最后可得答案. 【解析】 (1)设椭圆C的方程为,(其中a>b>0) 由题意得,且,解得a2=4,b2=2,c2=2, 所以椭圆C的方程为. (2)设直线l的方程为,代入椭圆C的方程, 化简得, 设A(x1,y1),B(x2,y2),则,, 由于|F1A|,|AB|,|BF1|依次成等差数列,则|F1A|+|BF1|=2|AB|. 而|F1A|+|AB|+|BF1|=4a=8,所以.=,解得k=±1; 当直线l⊥x轴时,,代入得y=±1,|AB|=2,不合题意. 所以,直线l的方程为.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,g(x)=x+lnx,其中a>0.
(1)若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值;
(2)若函数φ(x)=f(x)-g(x)在[e,e2](e为自然对数的底数)上存在零点,求实数a的取值范围.
(3)若对任意的x1,x2∈[1,e]都有f(x1)≥g(x2)成立,求实数a的取值范围.
查看答案
如图,在棱长为1的正方体ABCD-A1B1C1D1中,E是BC的中点,平面B1ED交A1D1于F
(1)指出F在A1D1上的位置,并证明;
(2)求三棱锥C1-B1EF的体积.

manfen5.com 满分网 查看答案
某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示
(1)求甲、乙两名运动员得分的中位数;
(2)你认为哪位运动员的成绩更稳定?
(3)如果从甲、乙两位运动员的7场得分中各随机抽取一场的得分,求甲的得分大于乙的得分的概率.

manfen5.com 满分网 查看答案
已知△ABC中内角A,B,C的对边分别为a,b,c,向量manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网
(1)求锐角B的大小;
(2)如果b=2,求△ABC的面积S△ABC的最大值.
查看答案
(1)将参数方程manfen5.com 满分网(e为参数)化为普通方程是    
(2)不等式|2x-1|+|2x-3|≥4的解集是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.