满分5 > 高中数学试题 >

已知函数f(x)=sin2xsinφ+cos2xcosφ-sin(+φ)(0<φ...

已知函数f(x)=manfen5.com 满分网sin2xsinφ+cos2xcosφ-manfen5.com 满分网sin(manfen5.com 满分网+φ)(0<φ<π),其图象过点(manfen5.com 满分网manfen5.com 满分网).
(Ⅰ)求φ的值;
(Ⅱ)将函数y=f(x)的图象上各点的横坐标缩短到原来的manfen5.com 满分网,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在[0,manfen5.com 满分网]上的最大值和最小值.
(1)由已知中函数f(x)=sin2xsinφ+cos2xcosφ-sin(+φ)(0<φ<π),其图象过点(,).我们将(,)代入函数的解析式,结合φ的取值范围,我们易示出φ的值. (2)由(1)的结论,我们可以求出y=f(x),结合函数图象的伸缩变换,我们可以得到函数y=g(x)的解析式,进而根据正弦型函数最值的求法,不难求出函数的最大值与最小值. 【解析】 ∵函数f(x)=sin2xsinφ+cos2xcosφ-sin(+φ)(0<φ<π), 又因为其图象过点(,). ∴φ- 解得:φ= (2)由(1)得φ=, ∴f(x)=sin2xsinφ+cos2xcosφ-sin(+φ) = ∴ ∵x∈[0,] ∴4x+∈ ∴当4x+=时,g(x)取最大值; 当4x+=时,g(x)取最小值-.
复制答案
考点分析:
相关试题推荐
在△ABC中,manfen5.com 满分网
(Ⅰ)证明B=C:
(Ⅱ)若cosA=-manfen5.com 满分网,求sinmanfen5.com 满分网的值.
查看答案
(Ⅰ)①证明两角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;②由Cα+β推导两角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知△ABC的面积manfen5.com 满分网,且manfen5.com 满分网,求cosC.
查看答案
△ABC中,D为边BC上的一点,BD=33,sinB=manfen5.com 满分网,cos∠ADC=manfen5.com 满分网,求AD.
查看答案
已知manfen5.com 满分网,化简:lg+lg[manfen5.com 满分网cos(x-manfen5.com 满分网)-lg(1+sin2x).
查看答案
已知α为第三象限的角,manfen5.com 满分网,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.