满分5 > 高中数学试题 >

已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),且当x>0时...

已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时有( )
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0
由已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),知f(x)为奇函数,g(x)为偶函数,又由当x>0时,f′(x)>0,g′(x)>0,可得在区间(0,+∞)上f(x),g(x)均为增函数,然后结合奇函数、偶函数的性质不难得到答案. 【解析】 由f(-x)=-f(x),g(-x)=g(x), 知f(x)为奇函数,g(x)为偶函数. 又x>0时,f′(x)>0,g′(x)>0, 知在区间(0,+∞)上f(x),g(x)均为增函数 由奇、偶函数的性质知, 在区间(-∞,0)上f(x)为增函数,g(x)为减函数 则当x<0时,f′(x)>0,g′(x)<0. 故选B
复制答案
考点分析:
相关试题推荐
顶点在同一球面上的正四棱柱ABCD-A′B′C′D′中,AB=1,AA′=manfen5.com 满分网,则A、C两点间的球面距离为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
把1+(1+x)+(1+x)2+…+(1+x)n展开成关于x的多项式,其各项系数和为an,则manfen5.com 满分网等于( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.1
D.2
查看答案
已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是( )
A.m⊂α,n⊂α,m∥β,n∥β⇒α∥β
B.α∥β,m⊂α,n⊂α,⇒m∥n
C.m⊥α,m⊥n⇒n∥α
D.n∥m,n⊥α⇒m⊥α
查看答案
已知f(x)为R上的减函数,则满足f(|manfen5.com 满分网|)<f(1)的实数x的取值范围是( )
A.(-1,1)
B.(0,1)
C.(-1,0)∪(0,1)
D.(-∞,-1)∪(1,+∞)
查看答案
以双曲线manfen5.com 满分网的右焦点为圆心,且与其渐近线相切的圆的方程是( )
A.x2+y2-10x+9=0
B.x2+y2-10x+16=0
C.x2+y2+10x+16=0
D.x2+y2+20x+9=0
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.