满分5 > 高中数学试题 >

现有8名奥运会志愿者,其中志愿者A1,A2,A3通晓日语,B1,B2,B3通晓俄...

现有8名奥运会志愿者,其中志愿者A1,A2,A3通晓日语,B1,B2,B3通晓俄语,C1,C2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(Ⅰ)求A1被选中的概率;
(Ⅱ)求B1和C1不全被选中的概率.
(Ⅰ)先用列举法,求出从8人中选出日语、俄语和韩语志愿者各1名,所有一切可能的结果对应的基本事件总个数,再列出A1恰被选中这一事件对应的基本事件个数,然后代入古典概型公式,即可求解. (Ⅱ)我们可利用对立事件的减法公式进行求解,即求出“B1,C1不全被选中”的对立事件“B1,C1全被选中”的概率,然后代入对立事件概率减法公式,即可得到结果. 【解析】 (Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名, 其一切可能的结果组成的基本事件空间Ω={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)} 由18个基本事件组成.由于每一个基本事件被抽取的机会均等, 因此这些基本事件的发生是等可能的. 用M表示“A1恰被选中”这一事件,则M={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2)} 事件M由6个基本事件组成,因而. (Ⅱ)用N表示“B1,C1不全被选中”这一事件, 则其对立事件表示“B1,C1全被选中”这一事件, 由于={(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)},事件有3个基本事件组成, 所以,由对立事件的概率公式得.
复制答案
考点分析:
相关试题推荐
给出下列四个命题:
①“∃x∈R,x2-x>0”的否定是“∀x∈R,x2-x≤0”;
②对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,
则x<0时,f′(x)>g′(x);
③函数manfen5.com 满分网是偶函数;
④若对∀x∈R,函数f(x)满足f(x+2)=-f(x),则4是该函数的一个周期,
其中所有真命题的序号为    (注:将真命题的序号全部填上) 查看答案
函数f(x)=log2|x-1|的单调递增区间为    查看答案
已知a、b都是非零向量,且manfen5.com 满分网+3manfen5.com 满分网与7manfen5.com 满分网-5manfen5.com 满分网垂直,manfen5.com 满分网-4manfen5.com 满分网与7manfen5.com 满分网-2manfen5.com 满分网垂直,则manfen5.com 满分网manfen5.com 满分网的夹角为    查看答案
manfen5.com 满分网学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n的样本,其频率分布直方图如图所示,其中支出在[50,60)元的同学有30人,则n的值为    查看答案
已知当x∈(-manfen5.com 满分网,π)时,不等式cos2x-2asinx+6a-1>0恒成立,求实数a的取值范围( )
A.manfen5.com 满分网
B.[-1,0]
C.manfen5.com 满分网
D.(manfen5.com 满分网,+∞)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.