满分5 > 高中数学试题 >

如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,点F是PB的中...

manfen5.com 满分网如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=manfen5.com 满分网,点F是PB的中点,点E在边BC上移动.
(Ⅰ)求三棱锥E-PAD的体积;
(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF.
本题考查了空间几何体的体积、线面位置关系的判定、线面垂直等知识点, (Ⅰ)利用换底法求VP-ADE即可;(Ⅱ)利用三角形的中位线及线面平行的判定定理解决; (Ⅲ)通过证明AF⊥平面PBE即可解决. 【解析】 (Ⅰ)三棱锥E-PAD的体积.(4分) (Ⅱ)当点E为BC的中点时,EF与平面PAC平行.(5分) ∵在△PBC中,E、F分别为BC、PB的中点, ∴EF∥PC,又EF⊄平面PAC,而PC⊂平面PAC, ∴EF∥平面PAC.(8分) (Ⅲ)证明: ∵PA⊥平面ABCD,BE⊂平面ABCD, ∴EB⊥PA,又EB⊥AB,AB∩AP=A,AB,AP⊂平面PAB, ∴EB⊥平面PAB,又AF⊂平面PAB, ∴AF⊥BE.(10分) 又PA=AB=1,点F是PB的中点, ∴AF⊥PB, 又∵PB∩BE=B,PB,BE⊂平面PBE, ∴AF⊥平面PBE. ∵PE⊂平面PBE, ∴AF⊥PE.(12分)
复制答案
考点分析:
相关试题推荐
已知不等式ax2+bx+c>0的解集为{x|2<x<4},则不等式cx2+bx+a<0的解集为    查看答案
椭圆manfen5.com 满分网的左、右焦点分别为F1,F2,P为椭圆M上任一点,且|PF1|•|PF2|的最大值的取值范围是[2c2,3c2],其中manfen5.com 满分网,则椭圆m的离心率e的取值范围是    查看答案
已知A(5,2)、B(1,1)、manfen5.com 满分网,在△ABC所在的平面区域内,若使目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,则a的值为    查看答案
如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点E.若AB=CD=2,则CE=   
manfen5.com 满分网 查看答案
函数f(x)由右表定义:若a1=1,a2=5,an+2=f(an),n∈N*,则a2010的值为    
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.