满分5 > 高中数学试题 >

已知函数f(x)=(a、b、c∈Z)是奇函数,又f(1)=2,f(2)<3,求a...

已知函数f(x)=manfen5.com 满分网(a、b、c∈Z)是奇函数,又f(1)=2,f(2)<3,求a、b、c的值.
首先由奇函数定义求c,然后利用f(1)=2,f(2)<3求a或b的取值范围,最后通过a、b、c∈Z求a、b、c的值. 【解析】 由f(-x)=-f(x),得-bx+c=-(bx+c), ∴c=0. 由f(1)=2,得a+1=2b① 由f(2)<3,得<3② 由①②得<3③ 解得-1<a<2. 又a∈Z, ∴a=0或a=1. 若a=0,则b=,与b∈Z矛盾, 若a=1,则b=1, 故a=1,b=1,c=0.
复制答案
考点分析:
相关试题推荐
定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判断:
①f(x)是周期函数;
②f(x)关于直线x=1对称;
③f(x)在[0,1]上是增函数;
④f(x)在[1,2]上是减函数;
⑤f(2)=f(0),
其中正确的序号是    查看答案
已知函数f(x)是定义在R上的偶函数,且满足f(x+1)+f(x)=3,当x∈[0,1]时,f(x)=2-x,则f(-2 009.9)=    查看答案
设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lg x,则满足f(x)>0的x的取值范围是    查看答案
已知f(x)=ln(manfen5.com 满分网),则下列正确的是( )
A.非奇非偶函数,在(0,+∞)上为增函数
B.奇函数,在R上为增函数
C.非奇非偶函数,在(0,+∞)上为减函数
D.偶函数,在R上为减函数
查看答案
已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<-manfen5.com 满分网的解集是( )
A.(-∞,-1)
B.(-∞,-1]
C.(1,+∞)
D.[1,+∞)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.