满分5 > 高中数学试题 >

已知函数f(x)=x+的定义域为(0,+∞),且f(2)=2+.设点P是函数图象...

manfen5.com 满分网已知函数f(x)=x+manfen5.com 满分网的定义域为(0,+∞),且f(2)=2+manfen5.com 满分网.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.
(1)由f(2)=2+=2+求解a. (2)先设点P的坐标为(x,y),则有y=x+,x>0,再由点到直线的距离公式求得|PM|,|PN|计算即可. (3)由(2)可将S四边形OMPN转化为S△OPM+S△OPN之和,分别用直角三角形面积公式求解,再构造S四边形OMPN面积模型求最值. 【解析】 (1)∵f(2)=2+=2+,∴a=. (2)设点P的坐标为(x,y),则有y=x+,x>0, 由点到直线的距离公式可知,|PM|==,|PN|=x, ∴有|PM|•|PN|=1,即|PM|•|PN|为定值,这个值为1. (3)由题意可设M(t,t),可知N(0,y). ∵PM与直线y=x垂直, ∴kPM•1=-1,即=-1.解得t=(x+y). 又y=x+,∴t=x+. ∴S△OPM=+,S△OPN=x2+. ∴S四边形OMPN=S△OPM+S△OPN=(x2+)+≥1+. 当且仅当x=1时,等号成立. 此时四边形OMPN的面积有最小值:1+.
复制答案
考点分析:
相关试题推荐
已知二次函数f(x)=x2+bx+c(b≥0,c∈R).若f(x)的定义域为[-1,0]时,值域也是[-1,0],符合上述条件的函数f(x)是否存在?若存在,求出若不存在,请说明理由.
查看答案
记函数manfen5.com 满分网的定义域为A,g(x)=lg[(x-a-1)(2a-x)],(a<1)的定义域为B.若B⊆A,求实数a的取值范围.
查看答案
已知关于x的方程sin2x-2sinx-a=0有实数解,求a的取值范围.
查看答案
对于任意实数x、y,定义运算x*y=ax+by+cxy,其中a、b、c是常数,等式右边的运算是通常的加法和乘法运算.现已知1*2=3,2*3=4,并且有一个非零实数m,使得对于任意实数x,都有x*m=x,试求m的值.
查看答案
设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0,f(x)<0;f(1)=-2.
(1)证明f(x)是奇函数;
(2)证明f(x)在R上是减函数;
(3)求f(x)在区间[-3,3]上的最大值和最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.