满分5 > 高中数学试题 >

有一块边长为4的正方形钢板,现对其进行切割、焊接成一个长方体形无盖容器(切、焊损...

有一块边长为4的正方形钢板,现对其进行切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作了如下设计:如图(a),在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高为小正方形边长,如图(b).
(1)请你求出这种切割、焊接而成的长方体的最大容积V1
(2)由于上述设计存在缺陷(材料有所浪费),请你重新设计切、焊方法,使材料浪费减少,而且所得长方体容器的容积V2>V1

manfen5.com 满分网
本题首先设出小正方形的边长为x,则长方体的长宽都为4-2x,体积等于长×宽×高,求出体积的导数,令其等于零得出最大容积.第二问主要对题意理解清楚,说的是材料有所浪费,想到在两个角切去小正方形,去下的小正方形焊到对边上组成新的长方体体积比原来的大. 【解析】 (1)设切去正方形边长为x,则焊接成的长方体的底面边长为4-2x,高为x, ∴V1=(4-2x)2•x=4(x3-4x2+4x)(0<x<2). ∴V1′=4(3x2-8x+4). 令V1′=0,得x1=,x2=2(舍去). 而V1′=12(x-)(x-2), 又当x<时,V1′>0;当<x<2时,V1′<0, ∴当x=时,V1取最大值. (2)重新设计方案如下: 如图①,在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;如图③,将图②焊成长方体容器. 新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积V2=3×2×1=6,显然V2>V1. 故第二种方案符合要求.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网已知函数f(x)=x+manfen5.com 满分网的定义域为(0,+∞),且f(2)=2+manfen5.com 满分网.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.
查看答案
已知二次函数f(x)=x2+bx+c(b≥0,c∈R).若f(x)的定义域为[-1,0]时,值域也是[-1,0],符合上述条件的函数f(x)是否存在?若存在,求出若不存在,请说明理由.
查看答案
记函数manfen5.com 满分网的定义域为A,g(x)=lg[(x-a-1)(2a-x)],(a<1)的定义域为B.若B⊆A,求实数a的取值范围.
查看答案
已知关于x的方程sin2x-2sinx-a=0有实数解,求a的取值范围.
查看答案
对于任意实数x、y,定义运算x*y=ax+by+cxy,其中a、b、c是常数,等式右边的运算是通常的加法和乘法运算.现已知1*2=3,2*3=4,并且有一个非零实数m,使得对于任意实数x,都有x*m=x,试求m的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.