满分5 > 高中数学试题 >

设f(x)是定义在[-1,1]上的奇函数,且对任意a、b∈[-1,1],当a+b...

设f(x)是定义在[-1,1]上的奇函数,且对任意a、b∈[-1,1],当a+b≠0时,都有manfen5.com 满分网>0.
(1)若a>b,比较f(a)与f(b)的大小;
(2)解不等式f(x-manfen5.com 满分网)<f(x-manfen5.com 满分网);
(3)记P={x|y=f(x-c)},Q={x|y=f(x-c2)},且P∩Q=∅,求c的取值范围.
先判断函数的单调性. (1)由函数的单调性即可求解. (2)(3)由函数的定义域及函数的单调性求解. 【解析】 设-1≤x1<x2≤1,则x1-x2≠0, ∴>0. ∵x1-x2<0,∴f(x1)+f(-x2)<0. ∴f(x1)<-f(-x2). 又f(x)是奇函数,∴f(-x2)=-f(x2). ∴f(x1)<f(x2). ∴f(x)是增函数. (1)∵a>b,∴f(a)>f(b). (2)由f(x-)<f(x-),得∴-≤x≤. ∴不等式的解集为{x|-≤x≤}. (3)由-1≤x-c≤1,得-1+c≤x≤1+c, ∴P={x|-1+c≤x≤1+c}. 由-1≤x-c2≤1,得-1+c2≤x≤1+c2, ∴Q={x|-1+c2≤x≤1+c2}. ∵P∩Q=∅, ∴1+c<-1+c2或-1+c>1+c2, 解得c>2或c<-1.
复制答案
考点分析:
相关试题推荐
有一块边长为4的正方形钢板,现对其进行切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作了如下设计:如图(a),在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高为小正方形边长,如图(b).
(1)请你求出这种切割、焊接而成的长方体的最大容积V1
(2)由于上述设计存在缺陷(材料有所浪费),请你重新设计切、焊方法,使材料浪费减少,而且所得长方体容器的容积V2>V1

manfen5.com 满分网 查看答案
manfen5.com 满分网已知函数f(x)=x+manfen5.com 满分网的定义域为(0,+∞),且f(2)=2+manfen5.com 满分网.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.
查看答案
已知二次函数f(x)=x2+bx+c(b≥0,c∈R).若f(x)的定义域为[-1,0]时,值域也是[-1,0],符合上述条件的函数f(x)是否存在?若存在,求出若不存在,请说明理由.
查看答案
记函数manfen5.com 满分网的定义域为A,g(x)=lg[(x-a-1)(2a-x)],(a<1)的定义域为B.若B⊆A,求实数a的取值范围.
查看答案
已知关于x的方程sin2x-2sinx-a=0有实数解,求a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.