满分5 > 高中数学试题 >

已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称. (...

已知函数f(x)的图象与函数h(x)=x+manfen5.com 满分网+2的图象关于点A(0,1)对称.
(1)求f(x)的解析式;
(2)(文)若g(x)=f(x)•x+ax,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.
(理)若g(x)=f(x)+manfen5.com 满分网,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.
(1)设f(x)图象上任一点坐标为(x,y),点(x,y)关于点A(0,1)的对称点(-x,2-y)在h(x)的图象上.由此可求出f(x). (2)(文)由题意知g(x)=x2+ax+1.由g(x)在(0,2]上递减可得到实数a的取值范围. (理)由题意知g′(x)=1-,g(x)在(0,2]上递减,1-≤0在x∈(0,2]时恒成立,由此能够推导出a的范围. 【解析】 (1)设f(x)图象上任一点坐标为(x,y),点(x,y)关于点A(0,1)的对称点(-x,2-y)在h(x)的图象上. ∴2-y=-x++2. ∴y=x+,即f(x)=x+. (2)(文)g(x)=(x+)•x+ax, 即g(x)=x2+ax+1. g(x)在(0,2]上递减⇒-≥2, ∴a≤-4. (理)g(x)=x+. ∵g′(x)=1-,g(x)在(0,2]上递减, ∴1-≤0在x∈(0,2]时恒成立, 即a≥x2-1在x∈(0,2]时恒成立. ∵x∈(0,2]时,(x2-1)max=3, ∴a≥3.
复制答案
考点分析:
相关试题推荐
设f(x)是定义在[-1,1]上的奇函数,且对任意a、b∈[-1,1],当a+b≠0时,都有manfen5.com 满分网>0.
(1)若a>b,比较f(a)与f(b)的大小;
(2)解不等式f(x-manfen5.com 满分网)<f(x-manfen5.com 满分网);
(3)记P={x|y=f(x-c)},Q={x|y=f(x-c2)},且P∩Q=∅,求c的取值范围.
查看答案
有一块边长为4的正方形钢板,现对其进行切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作了如下设计:如图(a),在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高为小正方形边长,如图(b).
(1)请你求出这种切割、焊接而成的长方体的最大容积V1
(2)由于上述设计存在缺陷(材料有所浪费),请你重新设计切、焊方法,使材料浪费减少,而且所得长方体容器的容积V2>V1

manfen5.com 满分网 查看答案
manfen5.com 满分网已知函数f(x)=x+manfen5.com 满分网的定义域为(0,+∞),且f(2)=2+manfen5.com 满分网.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.
查看答案
已知二次函数f(x)=x2+bx+c(b≥0,c∈R).若f(x)的定义域为[-1,0]时,值域也是[-1,0],符合上述条件的函数f(x)是否存在?若存在,求出若不存在,请说明理由.
查看答案
记函数manfen5.com 满分网的定义域为A,g(x)=lg[(x-a-1)(2a-x)],(a<1)的定义域为B.若B⊆A,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.