满分5 > 高中数学试题 >

已知的展开式中前三项的系数成等差数列. (Ⅰ)求n的值; (Ⅱ)求展开式中系数最...

已知manfen5.com 满分网的展开式中前三项的系数成等差数列.
(Ⅰ)求n的值;
(Ⅱ)求展开式中系数最大的项.
(I)利用二项展开式的通项公式求出展开式前三项的系数,列出方程求出n. (II)设出系数最大的项,据最大的系数大于等于它前一项的系数同时大于等于它后一项的系数,列出不等式组求出r,求出系数最大的项. 【解析】 (Ⅰ)由题设,得, 即n2-9n+8=0,解得n=8,n=1(舍去). (Ⅱ)设第r+1的系数最大,则 即解得r=2或r=3. 所以系数最大的项为T3=7x5,.
复制答案
考点分析:
相关试题推荐
以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,-5),点M的极坐标为(4,manfen5.com 满分网).若直线l过点P,且倾斜角为manfen5.com 满分网,圆C以M为圆心、4为半径.
(Ⅰ)求直线l的参数方程和圆C的极坐标方程;
(Ⅱ)试判定直线l和圆C的位置关系.
查看答案
给定矩阵M=manfen5.com 满分网,N=manfen5.com 满分网及向量e1=manfen5.com 满分网,e1=manfen5.com 满分网
(1)证明M和N互为逆矩阵;
(2)证明e1和e2都是M的特征向量.
查看答案
设函数f(x)=x2+ax+b(a、b为实常数),已知不等式|f(x)|≤|2x2+4x-6|对任意的实数x均成立.定义数列{an}和{bn}:a1=3,2an=f(an-1)+3(n=2,3,…),bn=manfen5.com 满分网,数列{bn}的前n项和Sn
(I)求a、b的值;
(II)求证:manfen5.com 满分网
(III )求证:manfen5.com 满分网
查看答案
已知椭圆manfen5.com 满分网,过点M(0,3)的直线l与椭圆C相交于不同的两点A、B.
(1)若l与x轴相交于点N,且A是MN的中点,求直线l的方程;
(2)设P为椭圆上一点,且manfen5.com 满分网(O为坐标原点),求当|AB|<manfen5.com 满分网时,实数λ的取值范围.
查看答案
设函数manfen5.com 满分网,在其图象上一点P(x,y)处的切线的斜率记为f(x).
(1)若方程f(x)=0有两个实根分别为-2和4,求f(x)的表达式;
(2)若g(x)在区间[-1,3]上是单调递减函数,求a2+b2的最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.