满分5 > 高中数学试题 >

袋中装有m个红球和n个白球,m≥n≥2,这些红球和白球除了颜色不同以外,其余都相...

袋中装有m个红球和n个白球,m≥n≥2,这些红球和白球除了颜色不同以外,其余都相同.从袋中同时取出2个球.
(1)若取出是2个红球的概率等于取出的是一红一白的2个球的概率的整数倍,试证m必为奇数;
(2)在m,n的数组中,若取出的球是同色的概率等于不同色的概率,试求失和m+n≤40的所有数组(m,n).
对于(1)首先设取出2个球是红球的概率是取出的球是一红一白2个球的概率的k倍,k为整数.然后分别计算出取出2个球是红球的概率和取出的球是一红一白2个球的概率,列出关系式,判断m的奇偶性即可. 对于(2)在m,n的数组中,分别求出取出的球是同色的概率和不同色的概率,然后相等得到关系式∴m2-m+n2-n-2mn=0,又由m+n≤40,求出可能的组数即可得到答案. 【解析】 (1)设取出2个球是红球的概率是取出的球是一红一白2个球的概率的k倍(k为整数) 则有 ∴ 即m=2kn+1∵k∈Z,n∈Z, 即m为奇数得证. (2)由题意,有, ∴ ∴m2-m+n2-n-2mn=0 即(m-n)2=m+n,∵m≥n≥2,∴m+n≥4, ∴,m-n的取值只可能是2,3,4,5,6 相应的m+n的取值分别是4,9,16,25,36, ∴或或或或, 注意到m≥n≥2 ∴(m,n)的数组值为(6,3),(10,6),(15,10),(21,15).
复制答案
考点分析:
相关试题推荐
A有一只放有x个红球,y个白球,z个黄球的箱子(x、y、z≥0,且x+y+z=6),B有一只放有3个红球,2个白球,1个黄球的箱子,两人各自从自己的箱子中任取一球比颜色,规定同色时为A胜,异色时为B胜.
(1)用x、y、z表示B胜的概率;(2)当A如何调整箱子中球时,才能使自己获胜的概率最大?
(3)若规定A取红球,白球,黄球而获胜的得分分别为1,2,3分,否则得0分,求A得分的期望的最大值及此时x,y,z的值.
查看答案
甲有一个箱子,里面放有x个红球,y个白球(x,y≥0,且x+y=4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子任取2个球,乙从箱子里在取1个球,若取出的3个球颜色全不相同,则甲获胜.
(1)试问甲如何安排箱子里两种颜色的个数,才能使自己获胜的概率最大?
(2)在(1)的条件下,求取出的3个球中红球个数的数学期望.
查看答案
袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为manfen5.com 满分网,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.
(1)求袋中原有白球的个数;
(2)求随机变量ξ的概率分布;
(3)求甲取到白球的概率.
查看答案
(1)设函数f(x)=xlnx+(1-x)ln(1-x)(0<x<1),求f(x)的最小值;
(2)设正数manfen5.com 满分网满足manfen5.com 满分网=1,求证:manfen5.com 满分网≥-n.
查看答案
在平面直角坐标系中,O为坐标原点,点F、T、M、P满足manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(Ⅰ)当t变化时,求点P的轨迹C的方程;
(Ⅱ)若过点F的直线交曲线C于A,B两点,求证:直线TA、TF、TB的斜率依次成等差数列.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.