已知定义在R上的函数f(x)=x
2(ax-3),其中a为常数.
(1)若x=1是函数f(x)的一个极值点,求a的值;
(2)若函数f(x)在区间(-1,0)上是增函数,求a的取值范围;
(3)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,求正数a的取值范围.
考点分析:
相关试题推荐
已知椭圆
的离心率为
,过右顶点A的直线l与椭圆C相交于A,B两点,且B(-1,-3).
(Ⅰ)求椭圆C和直线l的方程;
(Ⅱ)记曲线C在直线l下方的部分与线段AB所围成的平面区域(含边界)为D.若曲线x
2-2mx+y
2+4y+m
2-4=0与D有公共点,试求实数m的最小值.
查看答案
如图,在Rt△AOB中,
,斜边AB=4.Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到,且二面角B-AO-C是直二面角.动点D在斜边AB上.
(I)求证:平面COD⊥平面AOB;
(II)当D为AB的中点时,求异面直线AO与CD所成角的余弦值大小;
(III)求CD与平面AOB所成角最大时的正切值大小.
查看答案
某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求第四小组的频率,并补全这个频率分布直方图;
(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分(同一组中的数据用该组区间的中点值作代表);
(Ⅲ) 从成绩是70分以上(包括70分)的学生中选两人,求这两名学生的成绩均不低于80分的概率.
查看答案
若函数f(x)=sinax•cosax-sin
2ax(a>0)的图象与直线y=m相切,并且切点的横坐标依次成公差为π的等差数列.
(Ⅰ)求m的值;
(Ⅱ)求f(x)的单调增区间.
查看答案
直线
(t为参数)被圆
(θ为参数)所截得的弦长为
.
查看答案