满分5 > 高中数学试题 >

设a>0,函数f(x)=x2+a|lnx-1|. (Ⅰ)当a=2时,求函数f(x...

设a>0,函数f(x)=x2+a|lnx-1|.
(Ⅰ)当a=2时,求函数f(x)的单调增区间;
(Ⅱ)若x∈[1,+∞)时,不等式f(x)≥a恒成立,实数a的取值范围.
(1)由题意知当0<x≤e时,,f(x)在(1,e]内单调递增.当x≥e时,恒成立,故f(x)在[e,+∞)内单调递增.由此可知f(x)的单调增区间. (2)当x≥e时,f(x)=x2+alnx-a,(x≥e),f(x)在[e,+∞)上增函数.当1≤x<e时,f(x)=x2-alnx+a,(1≤x<e)由此可求出答案. 【解析】 (1)当a=2时,f(x)=x2+2|lnx-1| =(2分) 当0<x≤e时,, f(x)在(1,e]内单调递增; 当x≥e时,恒成立, 故f(x)在[e,+∞)内单调递增; ∴f(x)的单调增区间为(1,+∞).(6分) (2)①当x≥e时,f(x)=x2+alnx-a, (x≥e)∵a>0, ∴f′(x)>0恒成立,∴f(x)在[e,+∞)上增函数. 故当x=e时,ymin=f(e)=e2.(8分) ②当1≤x<e时,f(x)=x2-alnx+a, (1≤x<e) 当,即a≥2e2时, f′(x)在x∈(1,e)进为负数, 所以f(x)在区间[1,e]上为减函数, 故当x=e时,ymin=f(e)=e2.(14分) 所以函数y=f(x)的最小值为 . 由条件得此时0<a≤2; 或, 此时2<a≤2e;或,此时无解. 综上,0<a≤2e.(16分)
复制答案
考点分析:
相关试题推荐
已知数列{an}是首项为manfen5.com 满分网,公比manfen5.com 满分网的等比数列,设manfen5.com 满分网,数列{cn}满足cn=an•bn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若manfen5.com 满分网对一切正整数n恒成立,求实数m的取值范围.
查看答案
manfen5.com 满分网已知圆C:x2+y2=9,点A(-5,0),直线l:x-2y=0.
(1)求与圆C相切,且与直线l垂直的直线方程;
(2)在直线OA上(O为坐标原点),存在定点B(不同于点A),满足:对于圆C上任一点P,都有manfen5.com 满分网为一常数,试求所有满足条件的点B的坐标.
查看答案
如图,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,manfen5.com 满分网
(Ⅰ)求证:平面SAB⊥平面SAD;
(Ⅱ)设SB的中点为M,当manfen5.com 满分网为何值时,能使DM⊥MC?请给出证明.

manfen5.com 满分网 查看答案
在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题:
(1)本次活动共有多少件作品参加评比?
(2)哪组上交的作品数量最多?共有多少件?
(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?

manfen5.com 满分网 查看答案
已知A、B、C三点的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),manfen5.com 满分网
(1)若manfen5.com 满分网,求角α的值;
(2)若manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.