满分5 > 高中数学试题 >

已知函数f(x)=x,函数g(x)=λf(x)+sinx是区间[-1,1]上的减...

已知函数f(x)=x,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数.
(I)求λ的最大值;
(II)若g(x)<t2+λt+1在x∈[-1,1]上恒成立,求t的取值范围;
(Ⅲ)讨论关于x的方程manfen5.com 满分网的根的个数.
(I)由题意由于f(x)=x,所以函数g(x)=λf(x)+sinx=λx+sinx,又因为该函数在区间[-1,1]上的减函数,所以可以得到λ的范围; (II)由于g(x)<t2+λt+1在x∈[-1,1]上恒成立⇔[g(x)]max=g(-1)=-λ-sinl,解出即可; (III)利用方程与函数的关系可以构造成两函数图形的交点个数加以分析求解. 【解析】 (I)∵f(x)=x, ∴g(x)=λx+sinx, ∵g(x)在[-1,1]上单调递减, ∴g'(x)=λ+cosx≤0 ∴λ≤-cosx在[-1,1]上恒成立,λ≤-1,故λ的最大值为-1. (II)由题意[g(x)]max=g(-1)=-λ-sinl ∴只需-λ-sinl<t2+λt+1 ∴(t+1)λ+t2+sin+1>0(其中λ≤-1),恒成立, 令h(λ)=(t+1)λ+t2+sin1+1>0(λ≤-1), 则, ∴,而t2-t+sin1>0恒成立, ∴t<-1 又t=-1时-λ-sinl<t2+λt+1 故t≤-1(9分) (Ⅲ)由-2ex+m. 令f1(x)=-2ex+m, ∵f1′(x)=, 当x∈(0,e)时,f1′(x)≥0, ∴f1(x)在(0,e]上为增函数; 当x∈[e,+∞)时,f1′(x)≤0, ∴f1(x)在[e,+∞)为减函数; 当x=e时,[f1(x)]max=f1(e)=, 而f2(x)=(x-e)2+m-e2, ∴当m-e2>,即m>时,方程无解; 当m-e2=,即m=时,方程有一个根; 当m-e2<时,m<时,方程有两个根.(14分)
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且过点Pn(n,Sn)的切线的斜率为kn
(1)求数列{an}的通项公式.
(2)若manfen5.com 满分网,求数列{bn}的前n项和Tn
(3)设Q={x|x=kn,n∈N*},R={x|x=2an,n∈N*},等差数列{cn}的任一项cn∈Q∩R,其中c1是Q∩R中的最小数,110<c10<115,求{cn}的通项公式.
查看答案
已知椭圆C1manfen5.com 满分网=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且manfen5.com 满分网
(I)求椭圆C1的方程;   
(Ⅱ)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线7x-7y+1=0上,求直线AC的方程.
查看答案
如图,PA⊥平面ABCD,ABCD是矩形,PA=AB=1,PD与平面ABCD所成的角是30°,点
F是PB的中点,点E在边BC上移动,
(Ⅰ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅱ)证明:无论点E在边BC的何处,都有PE⊥AF;
(Ⅲ)当BE等于何值时,二面角P-DE-A的大小为45°?

manfen5.com 满分网 查看答案
“甲型H1N1流感”已经扩散,威胁着人类.某两个大国的研究所A、B,若独立地研究.“甲型H1N1流感”疫苗,研制成功的概率分别为manfen5.com 满分网;若资源共享,则提高了效率,即他们研制成功的概率比独立地研究时至少有一个研制成功的概率提高了50%.又疫苗研制成功可获得经济效益a万元,而资源共享时所得的经济效益只能两个研究所平均分配.请你给A研究所参谋:是否应该采用与B研究所合作的方式来研究疫苗,并说明理由.
查看答案
A、B是直线manfen5.com 满分网图象的两个相邻交点,且manfen5.com 满分网
(I)求ω的值;
(II)在锐角△ABC中,a,b,c分别是角A,B,C的对边,若manfen5.com 满分网的面积为manfen5.com 满分网,求a的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.