满分5 > 高中数学试题 >

已知椭圆的长轴长为4,离心率为,F1,F2分别为其左右焦点.一动圆过点F2,且与...

已知椭圆manfen5.com 满分网的长轴长为4,离心率为manfen5.com 满分网,F1,F2分别为其左右焦点.一动圆过点F2,且与直线x=-1相切.
(Ⅰ) (ⅰ)求椭圆C1的方程;(ⅱ)求动圆圆心轨迹C的方程;
(Ⅱ)在曲线C上有四个不同的点M,N,P,Q,满足manfen5.com 满分网manfen5.com 满分网共线,manfen5.com 满分网manfen5.com 满分网共线,且manfen5.com 满分网,求四边形PMQN面积的最小值.
(Ⅰ)利用待定系数法求出椭圆C1的a,b,c即可;因一动圆过点F2,且与直线x=-1相切可得此圆心到定点和到定直线的距离相等,它是抛物线,从而解决; (Ⅱ)欲求四边形PMQN面积的最小值,先建立面积关于某一个变量的函数关系式,设直线MN的方程为:y=k(x-1) 利用抛物线定义求出|MN|,再结合向量垂直关系求得|PQ|,最后利用基本不等式求出所列函数的最小值即可. 【解析】 (Ⅰ)(ⅰ)由已知可得, 则所求椭圆方程. (ⅱ)由已知可得动圆圆心轨迹为抛物线,且抛物线C的焦点为(1,0),准线方程为x=-1,则动圆圆心轨迹方程为C:y2=4x. (Ⅱ)由题设知直线MN,PQ的斜率均存在且不为零 设直线MN的斜率为k(k≠0),M(x1,y1),N(x2,y2),则直线MN的方程为:y=k(x-1) 联立C:y2=4x消去y可得k2x2-(2k2+4)x+k2=0 由抛物线定义可知: 设直线PQ的方程为,与椭圆的方程联立得 化简后,利用弦长公式可得|PQ|= 又 令1+k2=t>1 故有 又∈(0,3) 可得 所以四边形PMQN面积的最小值为8.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网(a∈R )
(Ⅰ) 若y=f(x) 在点P(1,f(1))处的切线方程为manfen5.com 满分网,求y=f(x)的解析式及单调递减区间;
(Ⅱ) 若y=f(x) 在[-2,0]上存在极值点,求实数a的取值范围.
查看答案
已知正项数列{an}满足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求证:数列{bn}为等比数列;
(2)记Tn为数列manfen5.com 满分网的前n项和,是否存在实数a,使得不等式manfen5.com 满分网对∀n∈N+恒成立?若存在,求出实数a的取值范围;若不存在,请说明理由.
查看答案
如图,已知ABCD 为平行四边形,∠A=60°,AF=2FB,AB=6,点E 在CD 上,EF∥BC,BD⊥AD,BD 与EF 相交于N.现将四边形ADEF 沿EF 折起,使点D 在平面BCEF 上的射影恰在直线BC 上.
(Ⅰ) 求证:BD⊥平面BCEF;
(Ⅱ) 求折后直线DE 与平面BCEF 所成角的余弦值.


manfen5.com 满分网 查看答案
在△ABC中,角A、B、C的对边分别为a.b.c,且manfen5.com 满分网manfen5.com 满分网,BC边上中线AM的长为manfen5.com 满分网
(Ⅰ)求角A和角B的大小;
(Ⅱ)求△ABC的面积.
查看答案
由9个正数组成的矩阵manfen5.com 满分网中,每行中的三个数成等差数列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比数列.给出下列结论:①第2列中的a12,a22,a32必成等比数列;②第1列中的a11,a21,a31不一定成等比数列;③a12+a32≥a21+a23;④若9个数之和等于9,则a22≥1.其中正确的序号有    (填写所有正确结论的序号). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.