满分5 > 高中数学试题 >

已知曲线(θ为参数),曲线(t为参数). (1)若α=,求曲线C2的普通方程,并...

已知曲线manfen5.com 满分网(θ为参数),曲线manfen5.com 满分网(t为参数).
(1)若α=manfen5.com 满分网,求曲线C2的普通方程,并说明它表示什么曲线;
(2)曲线C1和曲线C2的交点记为M,N,求|MN|的最小值.
(1)将α的值代入曲线方程,消去参数t即可求出曲线C2的普通方程,再根据直线参数方程代表的几何意义可知; (2)将弦长MN表示出来,要使|MN|的最小值,只需弦心距最大即可,此时弦心距为OG,解之即可. 【解析】 (1)∵∴(t为参数) ∴x-1=y+1,∴曲线C2的普通方程是y=x-2(2分) 它表示过(1,-1),倾斜角为的直线(3分) (2)曲线C1的普通方程为x2+y2=4(5分) 设G(1,-1),过G作MN⊥OG, 以下证明此时|MN|最小, 过G作直线M′N′,M′N′与MN不重合 在Rt△OG′G中,∵|OG|>|OG′|∴|MN|<|M′N′|(8分) 此时,(10分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网选做题
如图所示,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作AB的垂线,交AC的延长线于点E,交AD的延长线于点F,过G作⊙O的切线,切点为H.求证:
(Ⅰ)C,D,F,E四点共圆;
(Ⅱ)GH2=GE•GF.
查看答案
已知函数manfen5.com 满分网,令manfen5.com 满分网(m∈R).
(1)若∃x>0,,使f(x)≤0成立,求实数m的取值范围;
(2)设1<m≤e,H(x)=f(x)-(m+1)x,证明:对∀x1,x2∈[1,m],恒有H(x1)-H(x2)<1.
查看答案
已知抛物线C:x2=4y的焦点为F,过点F作直线l交抛物线C于A、B两点;椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且其离心率e=manfen5.com 满分网
(1)求椭圆E的方程;
(2)经过A、B两点分别作抛物线C的切线l1、l2,切线l1与l2相交于点M.证明:AB⊥MF;
(3)椭圆E上是否存在一点M′,经过点M′作抛物线C的两条切线M′A′、M′B(A′、B′为切点),使得直线A′B′过点F?若存在,求出抛物线C与切线M′A′、M′B所围成图形的面积;若不存在,试说明理由.
查看答案
如图1,直角梯形ABCD中,AD∥BC,∠ABC=90°,E,F分别为边AD和BC上的点,且EF∥AB,AD=2AE=2AB=4FC=4,将四边形EFCD沿EF折起如图2的位置,使AD=AE.
(I)求证:BC∥平面DAE;
(II)求四棱锥D-AEFB的体积;
(III)求面CBD与面DAE所成锐二面角的余弦值.

manfen5.com 满分网 查看答案
长春市某中学高三(1)班40名学生在一次数学测验中,成绩全部介于100分与150分之间,将测验成绩按如下方式分成五组:第一组[100,110);第二组[110,120),…,第五组[140,150].右图是按上述分组方法得到的频率分布直方图.
(I)若成绩在130分以上为优秀,求该班在这次测验中成绩优秀的人数;
(II)估计该班在这次测验中的平均分(同一组中的数据用该组区间的中点值作代表);
(III)该班有3名学生因故未参加考试,如果他们参加考试,且彼此之间的成绩不受影响,以已知样本数据的频率作为这3名同学成绩的概率.试求这3名学生中至少有1人成绩不低于130分的概率.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.