设F
1、F
2分别是椭圆
的左、右焦点.
(Ⅰ)若P是该椭圆上的一个动点,求PF
1•PF
2的最大值和最小值;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
考点分析:
相关试题推荐
如图,在三棱柱ABC-中,已知CC
1=BB
1=2,BC=1,
,AB⊥侧面BB
1C
1C,
(1)求直线C
1B与底面ABC所成角正切值;
(2)在棱CC
1(不包含端点C,C
1)上确定一点E的位置,使得EA⊥EB
1(要求说明理由).
(3)在(2)的条件下,若
,求二面角A-EB
1-A
1的大小.
查看答案
有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜色各异的灯,假若每只灯正常发光的概率为0.5.若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元,用ξ表示更换费用.
(1)求①号面需要更换的概率;
(2)求6个面中恰好有2个面需要更换的概率;
(3)写出ξ的分布列,并求ξ的数学期望.
查看答案
△ABC中,A,B,C所对的边分别为a,b,c,
,sin(B-A)=cosC.
(1)求A,C;
(2)若S
△ABC=,求a,c.
查看答案
设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),对于下列四个命题:
A.M中所有直线均经过一个定点
B.存在定点P不在M中的任一条直线上
C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上
D.M中的直线所能围成的正三角形面积都相等
其中真命题的代号是
(写出所有真命题的代号).
查看答案
已知函数f(x)=ax
3+bx
2+cx+d(a≠0)的导函数是g(x),设x
1,x
2是方程g(x)=0的两根.若a+b+c=0,g(0)•g(1)<0,则|x
1-x
2|的取值范围为
.
查看答案