已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.直线l的参数方程是
(t为参数),曲线C的极坐标方程为ρ=
sin(
).
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于M、N两点,求M、N两点间的距离.
考点分析:
相关试题推荐
如图,已已知AB圆O的直径,C、D是圆O上的两个点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.
(Ⅰ)求证:C是劣弧BD的中点;
(Ⅱ)求证:BF=FG.
查看答案
设函数
,
(p是实数,e为自然对数的底数)
(1)若f(x)在其定义域内为单调函数,求p的取值范围;
(2)若在[1,e]上至少存在一点x
,使得f(x
)>g(x
)成立,求p的取值范围.
查看答案
如图,已知直线L:
的右焦点F,且交椭圆C于A、B两点,点A、B在直线G:x=a
2上的射影依次为点D、E.
(1)若抛物线
的焦点为椭圆C的上顶点,求椭圆C的方程;
(2)若
为x轴上一点,求证:
.
查看答案
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差(x) | 10 | 11 | 13 | 12 | 8 |
发芽数y | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
=bx+a;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
查看答案
已知函数
(1)设x=x
是函数y=f(x)的图象上一条对称轴,求
的值.
(2)求使函数
,在区间
上是增函数的ω的最大值.
查看答案