满分5 > 高中数学试题 >

已知二次函数f(x)=ax2+bx+c,(a,b,c∈R)满足:对任意实数x,都...

已知二次函数f(x)=ax2+bx+c,(a,b,c∈R)满足:对任意实数x,都有f(x)≥x,且当x∈(1,3)时,有manfen5.com 满分网成立.
(1)证明:f(2)=2;
(2)若f(-2)=0,f(x)的表达式;
(3)设manfen5.com 满分网,x∈[0,+∞),若g(x)图上的点都位于直线manfen5.com 满分网的上方,求实数m的取值范围.
(1)由已知f(2)≥2恒成立,又由成立得(2)≤,由此两种情况可得f(2)=2. (2)f(-2)=0,由(1)证明知f(2)=2,f(x)的表达式中有三个未知数,由两函数值只能得出两个方程,再对任意实数x,都有f(x)≥x,这一恒成立的关系得到一0,由此可以得到a=,将此三方程联立可解出三个参数的值,求出f(x)的表达式; (3)方法一:由题f(x)图象(在y轴右侧)总在直线上方即可,也就是直线的斜率小于直线与抛物线相切时的斜率位置,由于f(x)图象与y轴交点在直线与y轴交点上方,在与y轴相交点处的切线斜率为,故在直线与二次函数相切的切点处一定有切线的斜率大于直线的斜率,且>,将两个方程联立,用判别式为0求m的最大值. 方法二:必须恒成立,即x2+4(1-m)x+2>0在x∈[0,+∞)恒成立. 转化为二次函数图象与x轴在x∈[0,+∞)无交点的问题,由于g(x)的单调性不确定,故本题要分两种情况讨论,一种是对称轴在y轴右侧,此时需要判别式小于0,一类是判别式大于0,对称轴小于0,且x=0处的函数值大于等于0,转化出相应的不等式求解. 【解析】 (1)由条件知f(2)=4a+2b+c≥2恒成立 又∵取x=2时,与恒成立, ∴f(2)=2. (2)∵ ∴4a+c=2b=1, ∴b=,c=1-4a 又f(x)≥x恒成立,即ax2+(-1)x+1-4a≥0恒成立. ∴,整理得 故可以解出:, ∴. (3)解法1:由分析条件知道,只要f(x)图象(在y轴右侧)总在直线上方即可,也就是直线的斜率小于直线与抛物线相切时的斜率位置, 于是: ∴. 解法2:必须恒成立, 即x2+4(1-m)x+2>0在x∈[0,+∞)恒成立. ①△<0,即[4(1-m)]2-8<0,解得:; ② 解出:.又时,经验证不合题意 总之,.
复制答案
考点分析:
相关试题推荐
若函数f(x)=sin2ax-sinaxcosax(a>0)的图象与直线y=m(m为常数)相切,并且切点的横坐标依次成公差为manfen5.com 满分网的等差数列.
(1)求m的值;
(2)若点A(x,y)是y=f(x)的图象的对称中心,且manfen5.com 满分网,求点A的坐标.
查看答案
给出下列五个命题:
①不等式x2-4ax+3a2<0的解集为{x|a<x<3a};
②若函数y=f(x+1)为偶函数,则y=f(x)的图象关于x=1对称;
③若不等式|x-4|+|x-3|<a的解集为空集,必有a≥1;
④函数y=f(x)的图象与直线x=a至多有一个交点;
⑤若角α,β满足cosα•cosβ=1,则sin(α+β)=0.
其中所有正确命题的序号是    查看答案
如果直线y=kx+1与圆x2+y2+kx+my-4=0相交于M、N两点,且点M、N关于直线x+y=0对称,则不等式组manfen5.com 满分网所表示的平面区域的面积为    查看答案
若点A(-6,0),点B(6,12),且manfen5.com 满分网,则过点P且在两坐标轴上有相等截距的直线方程是    查看答案
设a>0,b>0,a2+manfen5.com 满分网=1,则amanfen5.com 满分网的最大值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.