满分5 > 高中数学试题 >

设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f'(x)...

设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f'(x)是奇函数.
(Ⅰ)求b,c的值.
(Ⅱ)求g(x)的单调区间与极值.
(1)根据g(x)=f(x)-f'(x)是奇函数,且f'(x)=3x2+2bx+c能够求出b与c的值. (2)对g(x)进行求导,g'(x)>0时的x的取值区间为单调递增区间,g'(x)<0时的x的取值区间为单调递减区间.g'(x)=0时的x函数g(x)取到极值. 【解析】 (Ⅰ)∵f(x)=x3+bx2+cx,∴f'(x)=3x2+2bx+c. 从而g(x)=f(x)-f'(x)=x3+bx2+cx-(3x2+2bx+c)=x3+(b-3)x2+(c-2b)x-c 是一个奇函数,所以g(0)=0得c=0,由奇函数定义得b=3; (Ⅱ)由(Ⅰ)知g(x)=x3-6x,从而g'(x)=3x2-6, 当g'(x)>0时,x<-或x>, 当g'(x)<0时,-<x<, 由此可知,的单调递增区间;的单调递减区间; g(x)在x=时取得极大值,极大值为,g(x)在x=时取得极小值,极小值为.
复制答案
考点分析:
相关试题推荐
如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,
又∠PDA为45°
(1)求证:AF∥平面PEC
(2)求证:平面PEC⊥平面PCD.

manfen5.com 满分网 查看答案
已知:向量manfen5.com 满分网=(sinθ,1),向量manfen5.com 满分网,-manfen5.com 满分网<θ<manfen5.com 满分网
(1)若manfen5.com 满分网,求:θ的值;
(2)求:manfen5.com 满分网的最大值.
查看答案
若sina+cosa=manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
在锐角△ABC中,BC=1,∠B=2∠A,则AC的取值范围为    查看答案
关于函数f(x)=4sin(2x+manfen5.com 满分网)(x∈R),有下列命题:
①y=f(x)的表达式可改写为y=4cos(2x-manfen5.com 满分网);
②y=f(x)是以2π为最小正周期的周期函数;
③y=f(x)的图象关于点manfen5.com 满分网对称;
④y=f(x)的图象关于直线x=-manfen5.com 满分网对称.
其中正确的命题的序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.