登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
如图,四边形ABCD为矩形,平面ABCD⊥平面ABE,BE=BC,F为CE上的一...
如图,四边形ABCD为矩形,平面ABCD⊥平面ABE,BE=BC,F为CE上的一点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)求证:AE∥平面BFD.
(1)由平面ABCD⊥平面ABE,AD⊥AB,得到AD⊥平面ABE,从而得出AD⊥AE,由线面垂直的判定得AE⊥平面BCE,从而证得AE⊥BE,(2)设AC∩BD=G,连接FG,易知G是AC的中点,由中位线定理得FG∥AE,由线面平行的判定证得AE∥平面BFD. 【解析】 (1)证明:∵平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB,AD⊥AB, ∴AD⊥平面ABE,AD⊥AE. ∵AD∥BC,则BC⊥AE.(3分) 又BF⊥平面ACE,则BF⊥AE. ∵BC∩BF=B,∴AE⊥平面BCE,∴AE⊥BE.(7分) (2)设AC∩BD=G,连接FG,易知G是AC的中点, ∵BF⊥平面ACE,则BF⊥CE. 而BC=BE,∴F是EC中点.(10分) 在△ACE中,FG∥AE, ∵AE⊄平面BFD,FG⊂平面BFD, ∴AE∥平面BFD.(14分)
复制答案
考点分析:
相关试题推荐
在△ABC中,sin(C-A)=1,sinB=
.
(I)求sinA的值;
(II)设AC=
,求△ABC的面积.
查看答案
设等比数列{a
n
}的公比
,前n项和为S
n
,则
=
.
查看答案
设抛物线y
2
=2x的焦点为F,过点
的直线与抛物线相交于A,B两点,与抛物线的准线相交于C,|BF|=2,则△BCF与△ACF的面积之比
=
.
查看答案
给出下列关于互不相同的直线m,n,l和平面α,β的四个命题:
(1)m⊂α,l∩α=A,点A∉m,则l与m不共面;
(2)l、m是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;
(3)若l⊂α,m⊂α,l∩m=点A,l∥β,m∥β,则α∥β;
(4)若l∥α,m∥β,α∥β,则l∥m
其中真命题是
(填序号)
查看答案
已知函数
连续,则常数a的值是
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.