(Ⅰ)设出等差数列的首项和等差,根据等差数列的通项公式及前n项和的公式把已知条件a3=5,S15=225化简,得到关于首项和公差的两个关系式,联立两个关系式即可求出首项和公差,根据首项和公差写出数列的通项公式即可;
(Ⅱ)把求出的通项公式an代入bn=+2n中,得到bn的通项公式,然后列举出数列的各项,分别利用等差数列及等比数列的前n项和的公式化简后得到数列{bn}的前n项和Tn的通项公式.
【解析】
(Ⅰ)设等差数列{an}首项为a1,公差为d,
由题意,得,
解得,
∴an=2n-1;
(Ⅱ),
∴Tn=b1+b2+…+bn=(4+42+…+4n)+2(1+2+…+n)
==.