满分5 > 高中数学试题 >

如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且...

如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证:AE⊥平面BCE;
(Ⅱ)求证;AE∥平面BFD;
(Ⅲ)求三棱锥C-BGF的体积.

manfen5.com 满分网
(1)先证明AE⊥BC,再证AE⊥BF,由线面垂直的判定定理证明结论. (2)利用F、G为边长的中点证明FG∥AE,由线面平行的判定定理证明结论. (3)运用等体积法,先证FG⊥平面BCF,把原来的三棱锥的底换成面BCF,则高就是FG,代入体积公式求三棱锥的体积. 【解析】 (Ⅰ)证明:∵AD⊥平面ABE,AD∥BC, ∴BC⊥平面ABE,则AE⊥BC.又∵BF⊥平面ACE,则AE⊥BF ∴AE⊥平面BCE.(4分) (Ⅱ)证明:依题意可知:G是AC中点, ∵BF⊥平面ACE,则CE⊥BF,而BC=BE,∴F是EC中点.(6分) 在△AEC中,FG∥AE,∴AE∥平面BFD.(8分) (Ⅲ)【解析】 ∵AE∥平面BFD,∴AE∥FG,而AE⊥平面BCE, ∴FG⊥平面BCE,∴FG⊥平面BCF,(10分) ∵G是AC中点,∴F是CE中点,且, ∵BF⊥平面ACE,∴BF⊥CE.∴Rt△BCE中,. ∴,(12分)∴(14分)
复制答案
考点分析:
相关试题推荐
已知向量manfen5.com 满分网,设函数manfen5.com 满分网
(1)求f(x)的最小正周期与单调递减区间
(2)在△ABC中,a、b、c分别是角A、B、C的对边,若f(A)=4,b=1,△ABC的面积为manfen5.com 满分网,求a的值.
查看答案
知等差数列{an}的前n项和为Sn,且a3=5,S15=225.
(Ⅰ)求数列{an}的通项an
(Ⅱ)设bn=manfen5.com 满分网+2n,求数列{bn}的前n项和Tn
查看答案
设t>0,数列{an}是首项为t,公差为2t的等差数列,其前n项和为Sn,若对于任意n∈N*manfen5.com 满分网manfen5.com 满分网恒成立,则t的取值范围是    查看答案
已知x、y满足条件:manfen5.com 满分网,则manfen5.com 满分网的取值范围是    查看答案
已知ξ~N(μ,σ2),且p(ξ>0)+p(ξ≥-4)=1,则μ=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.