满分5 > 高中数学试题 >

设椭圆C:的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x...

设椭圆C:manfen5.com 满分网的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且manfen5.com 满分网
(1)求椭圆C的离心率;
(2)若过A、Q、F2三点的圆恰好与直线l:manfen5.com 满分网相切,求椭圆C的方程;
(3)在(2)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.


manfen5.com 满分网
(1)设Q(x,0),由F2(c,0),A(0,b)结合向量条件及向量运算得出关于a,c的等式,从而求得椭圆的离心率即可; (2)由(1)知a,c的一个方程,再利用△AQF的外接圆得出另一个方程,解这两个方程组成的方程组即可求得所求椭圆方程; (3)由(Ⅱ)知直线l:y=k(x-1),将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用弦长公式即可求得满足题意的点P且m的取值范围. 【解析】 (1)设Q(x,0),由F2(c,0),A(0,b) 知 ∵,∴, 由于即F1为F2Q中点. 故∴b2=3c2=a2-c2, 故椭圆的离心率,(3分) (2)由(1)知,得于是F2(a,0)Q, △AQF的外接圆圆心为(-a,0),半径r=|FQ|=a 所以,解得a=2,∴c=1,b=, 所求椭圆方程为,(6分) (3)由(Ⅱ)知F2(1,0)l:y=k(x-1) 代入得(3+4k2)x2-8k2x+4k2-12=0 设M(x1,y1),N(x2,y2) 则,y1+y2=k(x1+x2-2),(8分) =(x1+x2-2m,y1+y2) 由于菱形对角线垂直,则 故k(y1+y2)+x1+x2-2m=0 则k2(x1+x2-2)+x1+x2-2m=0k2(10分) 由已知条件知k≠0且k∈R∴∴ 故存在满足题意的点P且m的取值范围是.(12分)
复制答案
考点分析:
相关试题推荐
已知数列an是各项均不为0的等差数列,公差为d,Sn为其前n项和,且满足an2=S2n-1,n∈N*.数列bn满足manfen5.com 满分网,Tn为数列bn的前n项和.
(1)求a1、d和Tn
(2)若对任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求实数λ的取值范围;
(3)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.
查看答案
休假次数123
人数5102015
某单位实行休年假制度三年以来,50名职工休年假的次数进行的调查统计结果如下表所示:
根据上表信息解答以下问题:
(1)从该单位任选两名职工,用η表示这两人休年假次数之和,记“函数f(x)=x2-ηx-1在区间(4,6)上有且只有一个零点”为事件A,求事件A发生的概率P;
(2)从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.
查看答案
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(I)证明:CD⊥AE;
(II)证明:PD⊥平面ABE;
(III)求二面角A-PD-C的大小.

manfen5.com 满分网 查看答案
已知△ABC中内角A,B,C的对边分别为a,b,c,向量manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网
(1)求锐角B的大小;
(2)如果b=2,求△ABC的面积S△ABC的最大值.
查看答案
四棱锥P-ABCD的底面ABCD为正方形,且PD垂直于底面ABCD,manfen5.com 满分网,则三棱锥P-ANC与四棱锥P-ABCD的体积比为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.