满分5 > 高中数学试题 >

若关于x的方程|ax-1|=2a(a>0,a≠1)有两个不等实根,则a的取值范围...

若关于x的方程|ax-1|=2a(a>0,a≠1)有两个不等实根,则a的取值范围是( ).
A.(0,1)∪(1,+∞)
B.(0,1)
C.(1,+∞)
D.(0,manfen5.com 满分网
先画出a>1和0<a<1时的两种图象,根据图象可直接得出答案. 【解析】 据题意,函数y=|ax-1|(a>0,a≠1)的图象与直线y=2a有两个不同的交点. a>1时 0<a<1时 由图知,0<2a<1,所以a∈(0,), 故选D.
复制答案
考点分析:
相关试题推荐
设l、m、n表示不同的直线,α、β、γ表示不同的平面,给出下列4个命题:
①若m∥l,且m⊥α,则l⊥α;
②若m∥l,且m∥α,则l∥α;
③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;
④若α∩β=m,β∩γ=l,α∩γ=n,且n∥β,则m∥l.
其中正确命题的个数是( )
A.1
B.2
C.3
D.4
查看答案
已知集合A={1,2,a-1},B={0,3,a2+1},若A∩B={2},则实数a的值为  ( )
A.±1
B.1
C.-1
D.0
查看答案
设函数f(x)=x-a(x+1)ln(x+1),(x>-1,a≥0)
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当a=1时,若方程f(x)=t在manfen5.com 满分网上有两个实数解,求实数t的取值范围;
(Ⅲ)证明:当m>n>0时,(1+m)n<(1+n)m
查看答案
设椭圆C:manfen5.com 满分网的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且manfen5.com 满分网
(1)求椭圆C的离心率;
(2)若过A、Q、F2三点的圆恰好与直线l:manfen5.com 满分网相切,求椭圆C的方程;
(3)在(2)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.


manfen5.com 满分网 查看答案
已知数列an是各项均不为0的等差数列,公差为d,Sn为其前n项和,且满足an2=S2n-1,n∈N*.数列bn满足manfen5.com 满分网,Tn为数列bn的前n项和.
(1)求a1、d和Tn
(2)若对任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求实数λ的取值范围;
(3)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.