(1)通过向量的数量积求出函数的表达式,利用二倍角、两角和的正弦函数,化为一个角的一个三角函数的形式,通过正弦函数的最大值求函数y=f(x)取最值时x的取值集合;
(2)利用正弦定理以及两角和的正弦函数化简(2a-c)cosB=bcosC,求出B大小,利用(1)可得函数f(A)的表达式,结合A的范围,即可求出函数f(A)的取值范围.
【解析】
(1)f(x)==(sinωx,cosωx)•(cosωx,cosωx)
=sinωxcosωx+cos2ωx-
=sin2ωx+
=
=
∵T=4π=,∴ω=
∴f(x)=,
当x+= (k∈Z)时,f(x)取得最值,
此时x的取值集合为:{x|x=,k∈Z}.
(2)因为(2a-c)cosB=bcosC,
⇒(2sinA-cosC)cosB=sinBcosC,
⇒2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA.
⇒2cosB=1
⇒B=.
f(A)=,,
∴,
,
∴,
∴.