满分5 > 高中数学试题 >

已知函数f(x)=ax2+lnx(a∈R). (1)当时,求f(x)在区间[1,...

已知函数f(x)=ax2+lnx(a∈R).
(1)当manfen5.com 满分网时,求f(x)在区间[1,e]上的最大值和最小值;
(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称为g(x)为f1(x),f2(x)的“活动函数”.
已知函数manfen5.com 满分网manfen5.com 满分网
①若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围;
②当manfen5.com 满分网时,求证:在区间(1,+∞)上,函数f1(x),f2(x)的“活动函数”有无穷多个.
(1)由题意得,>0,∴f(x)在区间[1,e]上为增函数,即可求出函数的最值. (2)①由题意得:令<0,对x∈(1,+∞)恒成立,且h(x)=f1(x)-f(x)=<0对x∈(1,+∞)恒成立,分类讨论当或时两种情况求函数的最大值,可得到a的范围.又因为h′(x)=-x+2a-=<0,h(x)在(1,+∞)上为减函数,可得到a的另一个范围,综合可得a的范围. ②设y=f2(x)-f1(x)=x2-lnx,x∈(1,+∞).因为y′=>0,y=f2(x)-f1(x)在(1,+∞)为增函数, 所以f2(x)-f1(x)>f2(1)-f1(1)=.设R(x)=f1(x)+(0<λ<1),则f1(x)<R(x)<f2(x). 【解析】 (1)当时,,; 对于x∈[1,e],有f'(x)>0,∴f(x)在区间[1,e]上为增函数, ∴,. (2)①在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)<f(x)<f2(x) 令<0,对x∈(1,+∞)恒成立, 且h(x)=f1(x)-f(x)=<0对x∈(1,+∞)恒成立, ∵ 1)若,令p′(x)=0,得极值点x1=1,, 当x2>x1=1,即时,在(x2,+∞)上有p′(x)>0, 此时p(x)在区间(x2,+∞)上是增函数,并且在该区间上有p(x)∈(p(x2),+∞),不合题意; 当x2<x1=1,即a≥1时,同理可知,p(x)在区间(1,+∞)上,有p(x)∈(p(1),+∞),也不合题意; 2)若,则有2a-1≤0,此时在区间(1,+∞)上恒有p′(x)<0, 从而p(x)在区间(1,+∞)上是减函数; 要使p(x)<0在此区间上恒成立,只须满足, 所以≤a≤. 又因为h′(x)=-x+2a-=<0,h(x)在(1,+∞)上为减函数, h(x)<h(1)=+2a≤0,所以a≤ 综合可知a的范围是[,]. ②当时, 则y=f2(x)-f1(x)=x2-lnx,x∈(1,+∞). 因为y′=>0,y=f2(x)-f1(x)在(1,+∞)为增函数, 所以f2(x)-f1(x)>f2(1)-f1(1)=. 设R(x)=f1(x)+(0<λ<1),则f1(x)<R(x)<f2(x), 所以在区间(1,+∞)上,函数f1(x),f2(x)的“活动函数”有无穷多个.
复制答案
考点分析:
相关试题推荐
设椭圆T:manfen5.com 满分网(a>b>0),直线l过椭圆左焦点F1且不与x轴重合,l与椭圆交于P、Q,当l与x轴垂直时,|PQ|=manfen5.com 满分网,F2为椭圆的右焦点,M为椭圆T上任意一点,若△F1MF2面积的最大值为manfen5.com 满分网
(1)求椭圆T的方程;
(2)直线l绕着F1旋转,与圆O:x2+y2=5交于A、B两点,若|AB|∈(4,manfen5.com 满分网)),求△F2PQ的面积S的取值范围.
查看答案
如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP,PC⊥AC.
(Ⅰ)求证:PC⊥AB;
(Ⅱ)设二面角P-AB-C的大小为manfen5.com 满分网,求二面角B-AP-C的余弦值的范围.

manfen5.com 满分网 查看答案
数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1,等差数列{bn}满足b3=3,b5=9,(1)分别求数列{an},{bn}的通项公式;
(2)若对任意的n∈N*manfen5.com 满分网恒成立,求实数k的取值范围.
查看答案
已知manfen5.com 满分网若函数f(x)=manfen5.com 满分网的最小正周期是4π.
(1)求函数y=f(x)取最值时x的取值集合;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
查看答案
已知O是锐角△ABC的外接圆圆心,∠A=θ,若manfen5.com 满分网,则m=    .(用θ表示) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.