根据新定义直接求出d(A,O);求出过圆上的点与直线 的点坐标的“折线距离”的表达式,然后求出最小值.
【解析】
设直线 上的任意一点坐标(x,y),
圆上任意一点的坐标为; (cosθ,sinθ)
由题意可知:d=|x-cosθ|+|2-2x-sinθ|
分类讨论:
a)x≥-sinθ
可知x>1≥cosθ
d=x-cosθ-2+2x+sinθ=3x-cosθ-2+sinθ≥3(-sinθ)-cosθ-2+sinθ
=-sinθ-cosθ=-sin(θ+α)≥
b)-sinθ>x>cosθ解同上
C)x<cosθ解得,d≥.
∴圆x2+y2=1上一点与直线上一点的“折线距离”的最小值是-1.
故答案为:.