如图,平行四边形ABCD中,CD=1,∠BCD=60.,且BD⊥CD,正方形ADEF和平面ABCD成直二面角,G,H是DF,BE的中点.
(Ⅰ)求证:BD⊥平面CDE;
(Ⅱ)求证:GH∥平面CDE;
(Ⅲ)求三棱锥D-CEF的体积.
考点分析:
相关试题推荐
已知△ABC的三个内角A、B、C的对边分别为a、b、c,且b
2+c
2=a
2+bc,求:(1) 2sinBcosC-sin(B-C)的值;(2)若a=2,求△ABC周长的最大值.
查看答案
在平面直角坐标系中,定义d(P,Q)=|x
1-x
2|+|y
1-y
2|为两点P(x
1,y
1),Q(x
2,y
2)之间的“折线距离”.则圆x
2+y
2=1上一点与直线
上一点的“折线距离”的最小值是
.
查看答案
用一张正方形包装纸把一个棱长为1的正四面体礼品盒包住(按常规,包装纸可折叠,但不能剪开),则包装纸的最小面积是
.
查看答案
已知三次函数
在R上单调递增,则
的最小值为
.
查看答案
已知函数y=f(x)的图象如图,则满足
的x的取值范围为
.
查看答案