满分5 > 高中数学试题 >

如图,海岸线MAN,∠A=2θ,现用长为l的拦网围成一养殖场,其中B∈MA,C∈...

如图,海岸线MAN,∠A=2θ,现用长为l的拦网围成一养殖场,其中B∈MA,C∈NA.
(1)若BC=l,求养殖场面积最大值;
(2)若B、C为定点,BC<l,在折线MBCN内选点D,使BD+DC=l,求四边形养殖场DBAC的最大面积;
(3)若(2)中B、C可选择,求四边形养殖场ACDB面积的最大值.

manfen5.com 满分网
(1)先设AB=x,AC=y,x>0,y>0,由余弦定理得出关于x,y的等式,再结合基本不等式求出xy的最大值,从而得出养殖场面积最大值; (2)设AB=m,AC=n(m,n为定值).由DB+DC=l=2a为定值知点D在以B、C为焦点的椭圆上,欲使四边形养殖场DBAC的最大面积,只需△DBC面积最大,需此时点D到BC的距离最大,即D必为椭圆短轴顶点即可. (3)先确定点B、C,使BC<l.由(2)知△DBC为等腰三角形时,四边形ACDB面积最大.确定△BCD的形状,使B、C分别在AM、AN上滑动,且BC保持定值,由(1)知AB=AC时,四边形ACDB面积最大. 【解析】 (1)设AB=x,AC=y,x>0,y>0.,,, 所以,△ABC面积的最大值为,当且仅当x=y时取到. (2)设AB=m,AC=n(m,n为定值). BC=2c(定值), 由DB+DC=l=2a,a=l,知点D在以B、C为焦点的椭圆上,为定值. 只需△DBC面积最大,需此时点D到BC的距离最大,即D必为椭圆短轴顶点.面积的最大值为, 因此,四边形ACDB面积的最大值为. (3)先确定点B、C,使BC<l.由(2)知△DBC为等腰三角形时,四边形ACDB面积最大. 确定△BCD的形状,使B、C分别在AM、AN上滑动,且BC保持定值, 由(1)知AB=AC时,四边形ACDB面积最大. 此时,△ACD≌△ABD,∠CAD=∠BAD=θ,且CD=BD=. S=. 由(1)的同样方法知,AD=AC时,三角形ACD面积最大,最大值为. 所以,四边形ACDB面积最大值为.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,平行四边形ABCD中,CD=1,∠BCD=60.,且BD⊥CD,正方形ADEF和平面ABCD成直二面角,G,H是DF,BE的中点.
(Ⅰ)求证:BD⊥平面CDE;
(Ⅱ)求证:GH∥平面CDE;
(Ⅲ)求三棱锥D-CEF的体积.
查看答案
已知△ABC的三个内角A、B、C的对边分别为a、b、c,且b2+c2=a2+bc,求:(1) 2sinBcosC-sin(B-C)的值;(2)若a=2,求△ABC周长的最大值.
查看答案
在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.则圆x2+y2=1上一点与直线manfen5.com 满分网上一点的“折线距离”的最小值是    查看答案
用一张正方形包装纸把一个棱长为1的正四面体礼品盒包住(按常规,包装纸可折叠,但不能剪开),则包装纸的最小面积是    查看答案
已知三次函数manfen5.com 满分网在R上单调递增,则manfen5.com 满分网的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.