满分5 > 高中数学试题 >

已知各项均为正数的数列{an}满足a=,an=an-1+,其中n=1,2,3,…...

已知各项均为正数的数列{an}满足a=manfen5.com 满分网,an=an-1+manfen5.com 满分网,其中n=1,2,3,….
(1)求a1和a2的值;
(2)求证:manfen5.com 满分网
(3)求证:manfen5.com 满分网
(1)根据递推关系an=an-1+,即可求出a1和a2的值; (2)利用放缩法可得,然后两边同时除以anan-1即可得到结论; (3)根据(2)可得an<n,从而,即,,而,从而,∴,即可证得结论. 【解析】 (1)∵, ∴,. (2)∵an-an-1=>0, ∴,∴. (3)… 又, ∴an<n. ∵, ∴. ∴. ∴ ∴. ∵,∴,∴. 综上所述,.
复制答案
考点分析:
相关试题推荐
设P(a,b)、R(a,2)为坐标平面xoy上的点,直线OR(O为坐标原点)与抛物线manfen5.com 满分网交于点Q(异于O).
(1)若对任意ab≠0,点Q在抛物线y=mx2+1(m≠0)上,试问当m为何值时,点P在某一圆上,并求出该圆方程M;
(2)若点P(a,b)(ab≠0)在椭圆x2+4y2=1上,试问:点Q能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;
(3)对(1)中点P所在圆方程M,设A、B是圆M上两点,且满足|OA|•|OB|=1,试问:是否存在一个定圆S,使直线AB恒与圆S相切.
查看答案
如图,海岸线MAN,∠A=2θ,现用长为l的拦网围成一养殖场,其中B∈MA,C∈NA.
(1)若BC=l,求养殖场面积最大值;
(2)若B、C为定点,BC<l,在折线MBCN内选点D,使BD+DC=l,求四边形养殖场DBAC的最大面积;
(3)若(2)中B、C可选择,求四边形养殖场ACDB面积的最大值.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,平行四边形ABCD中,CD=1,∠BCD=60.,且BD⊥CD,正方形ADEF和平面ABCD成直二面角,G,H是DF,BE的中点.
(Ⅰ)求证:BD⊥平面CDE;
(Ⅱ)求证:GH∥平面CDE;
(Ⅲ)求三棱锥D-CEF的体积.
查看答案
已知△ABC的三个内角A、B、C的对边分别为a、b、c,且b2+c2=a2+bc,求:(1) 2sinBcosC-sin(B-C)的值;(2)若a=2,求△ABC周长的最大值.
查看答案
在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.则圆x2+y2=1上一点与直线manfen5.com 满分网上一点的“折线距离”的最小值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.