满分5 > 高中数学试题 >

如图所示,正方形ABCD与直角梯形ADEF所在平面互相垂直,∠ADE=90°,A...

如图所示,正方形ABCD与直角梯形ADEF所在平面互相垂直,∠ADE=90°,AF∥DE,DE=DA=2AF=2.
(1)求证:AC∥平面BEF;
(2)求四面体BDEF的体积.

manfen5.com 满分网
(1)设正方形ABCD的中心为O,取BE中点G,连接FG,OG,由中位线定理,我们易得四边形AFGO是平行四边形,即FG∥OA,由直线与平面平行的判定定理即可得到AC∥平面BEF; (2)由已知中正方形ABCD与直角梯形ADEF所在平面互相垂直,∠ADE=90°,我们可以得到AB⊥平面ADEF,结合DE=DA=2AF=2.分别计算棱锥的底面面积和高,代入棱锥体积公式即可求出四面体BDEF的体积. 证明:(1)设AC∩BD=O,取BE中点G,连接FG,OG, 所以,OG∥DE,且OG=DE. 因为AF∥DE,DE=2AF, 所以AF∥OG,且OG=AF, 从而四边形AFGO是平行四边形,FG∥OA. 因为FG⊂平面BEF,AO⊄平面BEF, 所以AO∥平面BEF,即AC∥平面BEF.…(6分) 【解析】 (2)因为平面ABCD⊥平面ADEF,AB⊥AD, 所以AB⊥平面ADEF.因为AF∥DE,∠ADE=90°,DE=DA=2AF=2 所以△DEF的面积为S△DEF=×ED×AD=2, 所以四面体BDEF的体积V=•S△DEF×AB=(12分)
复制答案
考点分析:
相关试题推荐
某食品厂为了检查甲乙两条自动包装流水线的生产情况,在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在(495,510]的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本的频率分布直方图.
表1:(甲流水线样本频数分布表)
产品重量(克)频数
(490,495]6
(495,500]8
(500,505]14
(505,510]8
(510,515]4
(1)若检验员不小心将甲、乙两条流水线生产的重量值在(510,515]的产品放在了一起,然后又随机取出3件产品,求至少有一件是乙流水线生产的产品的概率.
(2)由以上统计数据完成下面2×2列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.
甲流水线乙流水线合计
合格品a=b=
不合格品c=d=
合计n=


manfen5.com 满分网 查看答案
已知向量m=(manfen5.com 满分网manfen5.com 满分网),n=(manfen5.com 满分网manfen5.com 满分网),记f(x)=m•n;
(1)若f(x)=1,求manfen5.com 满分网的值;
(2)若△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函
数f(A)的取值范围.
查看答案
已知对于任意非零实数m,不等式|5m-3|+|3-4m|≥|m|(x-manfen5.com 满分网)恒成立,则实数x的取值范围是    查看答案
在直角坐标平面内,已知点列P1(1,2),P2(2,22),P3(3,23),…,Pn(n,2n),…如果k为正偶数,则向量manfen5.com 满分网的纵坐标(用k表示)为    查看答案
设奇函数y=f(x)(x∈R),满足对任意t∈R都有f(t)=f(1-t),且manfen5.com 满分网时,f(x)=-x2,则manfen5.com 满分网的值等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.