满分5 > 高中数学试题 >

各项为正数的数列{an} 的前n项和为Sn,且满足:Sn=2++(n∈N*) (...

各项为正数的数列{an} 的前n项和为Sn,且满足:Sn=manfen5.com 满分网2+manfen5.com 满分网+manfen5.com 满分网(n∈N*
(1)求an
(2)设函数f(n)=manfen5.com 满分网,cn=f(2n+4(n∈N*),求数列{cn} 的前n项和Tn
(3)设λ为实数,对满足m+n=3k且m≠n的任意正整数m、n、k,不等式Sm+Sn>λSk恒成立,求实数λ的最大值.
(1)由已知可得Sn=2++(n∈N*)从而导出,(an+an-1)(an-an-1-2)=0,而an为正数,所以an-an-1=2(n≥2),由此推出an的通项公式. (2)先求出{cn}的通项公式,然后利用等比数列求和公式求解即可,注意讨论n; (3)根据不等式Sm+Sn>λSk恒成立,将参数λ分离出来,研究不等式另一侧的最值,又m+n=3k且m≠n,利用基本不等式即可求出最值,从而求出实数λ的最大值. 【解析】 (1)由Sn=2++(n∈N*)…① 得n≥2时,Sn-1=2++(n∈N*)…② ①-②化简可得,(an+an-1)(an-an-1-2)=0 又an>0,所以当n≥2时,an-an-1=2 ∴数列{an} 成等差数列,公差为2 又则a1=1 ∴an=2n-1 (2)由f(n)=, 可得c1=f(6)=f(3)=a3=5 c2=f(8)=f(4)=f(2)=f(1)=a1=1 当n≥3时 cn=f(2n+4)=f(2n-1+2)=f(2n-2+1)=2(2n-1+1)-1=2n-1+1 故当n≥3时 Tn=2n+n ∴   (3)Sm+Sn>λSk⇒m2d2+n2d2>c•k2d2⇒m2+n2>λ•k2,恒成立. 又m+n=3k且m≠n,, 故,即λ的最大值为 .
复制答案
考点分析:
相关试题推荐
已知函数f(x)=(x2-3x+3)•ex
(Ⅰ)试确定t的取值范围,使得函数f(x)在[-2,t]上为单调函数;
(2)当t>-2时,判断f(-2)和f(t)的大小,并说明理由;
(3)求证:当1<t<4时,关于x的方程:manfen5.com 满分网在区间[-2,t]上总有两个不同的解.
查看答案
设椭圆manfen5.com 满分网(a>b>0)的焦点分别为F1(-1,0)、F2(1,0),直线l:x=a2交x轴于点A,且manfen5.com 满分网
(Ⅰ)试求椭圆的方程;
(2)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),若四边形DMEN的面积为manfen5.com 满分网,求DE的直线方程.

manfen5.com 满分网 查看答案
如图所示,正方形ABCD与直角梯形ADEF所在平面互相垂直,∠ADE=90°,AF∥DE,DE=DA=2AF=2.
(1)求证:AC∥平面BEF;
(2)求四面体BDEF的体积.

manfen5.com 满分网 查看答案
某食品厂为了检查甲乙两条自动包装流水线的生产情况,在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在(495,510]的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本的频率分布直方图.
表1:(甲流水线样本频数分布表)
产品重量(克)频数
(490,495]6
(495,500]8
(500,505]14
(505,510]8
(510,515]4
(1)若检验员不小心将甲、乙两条流水线生产的重量值在(510,515]的产品放在了一起,然后又随机取出3件产品,求至少有一件是乙流水线生产的产品的概率.
(2)由以上统计数据完成下面2×2列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.
甲流水线乙流水线合计
合格品a=b=
不合格品c=d=
合计n=


manfen5.com 满分网 查看答案
已知向量m=(manfen5.com 满分网manfen5.com 满分网),n=(manfen5.com 满分网manfen5.com 满分网),记f(x)=m•n;
(1)若f(x)=1,求manfen5.com 满分网的值;
(2)若△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函
数f(A)的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.