满分5 > 高中数学试题 >

已知定点C(-1,0)及椭圆x2+3y2=5,过点C的动直线与椭圆相交于A,B两...

已知定点C(-1,0)及椭圆x2+3y2=5,过点C的动直线与椭圆相交于A,B两点.
(Ⅰ)若线段AB中点的横坐标是manfen5.com 满分网,求直线AB的方程;
(Ⅱ)在x轴上是否存在点M,使manfen5.com 满分网为常数?若存在,求出点M的坐标;若不存在,请说明理由.
(1)根据题意,设出直线AB的方程,将直线方程代入椭圆,用设而不求韦达定理方法表示出中点坐标,此时代入已知AB中点的横坐标即可求出直线AB的方程. (2)假设存在点M,使为常数.分别分当直线AB与x轴不垂直时以及当直线AB与x轴垂直时求出点M的坐标.最后综合两种情况得出结论. 【解析】 (Ⅰ)依题意,直线AB的斜率存在,设直线AB的方程为y=k(x+1), 将y=k(x+1)代入x2+3y2=5,消去y整理得(3k2+1)x2+6k2x+3k2-5=0. 设A(x1,y1),B(x2,y2),则 由线段AB中点的横坐标是,得, 解得,适合(1). 所以直线AB的方程为,或. (Ⅱ)【解析】 假设在x轴上存在点M(m,0),使为常数. ①当直线AB与x轴不垂直时,由(Ⅰ)知 所以 =(k2+1)x1x2+(k2-m)(x1+x2)+k2+m2 将(3)代入,整理得 = 注意到是与k无关的常数,从而有,此时 ②当直线AB与x轴垂直时,此时点A,B的坐标分别为, 当时,亦有 综上,在x轴上存在定点,使为常数.
复制答案
考点分析:
相关试题推荐
已知a∈R,函数f(x)=x2(x-a).
(1)当a=1时,求f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)在区间[1,2]上的最小值h(a).
查看答案
已知数列{an}满足:a1=1,an+1=manfen5.com 满分网an+manfen5.com 满分网(n∈N*).
(1)求证:数列{an•2n}是等差数列;
(2)求{an}的前n项和Sn
查看答案
已知正三棱柱ABC-A1B1C1的各条棱长都为a,P为A1B上的点,且PC⊥AB
(1)求证:P点为A1B的中点;
(2)求二面角P-AC-B的正切值.

manfen5.com 满分网 查看答案
为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂,
(Ⅰ)求从A,B,C区中分别抽取的工厂个数;
(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率.
查看答案
已知函数f(x)=Asin(2ωx+φ)(A,ω>0,0<φ<π)在x=manfen5.com 满分网时取最大值2,x1,x2是集合M={x∈R|f(x)=0}中的任意两个元素,且|x1-x2|的最小值为manfen5.com 满分网
(1)求f(x);
(2)若f(a)=manfen5.com 满分网,a∈(manfen5.com 满分网manfen5.com 满分网),求sin(manfen5.com 满分网-2a)的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.