满分5 > 高中数学试题 >

设A(x1,y1),B(x2,y2)是椭圆,(a>b>0)上的两点,已知向量=(...

设A(x1,y1),B(x2,y2)是椭圆manfen5.com 满分网,(a>b>0)上的两点,已知向量manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),且manfen5.com 满分网,若椭圆的离心率manfen5.com 满分网,短轴长为2,O为坐标原点:
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
(Ⅰ)根据题意可求得b,进而根据离心率求得a和c,则椭圆的方程可得. (Ⅱ)设出直线AB的方程,与椭圆方程联立消去y,表示出x1+x2和x1x2,利用建立方程求得k. (Ⅲ)先看当直线的斜率不存在时,可推断出x1=x2,y1=-y2,根据=0求得x1和y1的关系式,代入椭圆的方程求得|x1|和|y1|求得三角形的面积;再看当直线斜率存在时,设出直线AB的方程,与椭圆方程联立,利用韦达定理表示出x1+x2和x1x2,利用=0求得2b2-k2=4,最后利用弦长公式和三角形面积公式求得答案. 【解析】 (Ⅰ)2b=2.b=1,e= 椭圆的方程为 (Ⅱ)由题意,设AB的方程为y=kx+ 由已知=0得: = ,解得k=± (Ⅲ)(1)当直线AB斜率不存时,即x1=x2,y1=-y2, 由=0 又A(x1,y1)在椭圆上,所以 S= 所以三角形的面积为定值 (2)当直线AB斜率存在时,设AB的方程为y=kx+b 得到x1+x2= 代入整理得: 2b2-k2=4 = 所以三角形的面积为定值
复制答案
考点分析:
相关试题推荐
如图,矩形ABCD和直角梯形BEFC所在平面互相垂直,∠BCF-90°,BE∥CF,CE⊥EF,AD=manfen5.com 满分网,EF=2.
(1)求异面直线AD与EF所成的角;
(2)当AB的长为何值时,二面角A-EF-C的大小为45°?

manfen5.com 满分网 查看答案
在一次数学考试中,共有10道选择题,每题均有四个选项,其中有且只有一个选项是正确的,评分标准规定:“每道题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有6道题是正确的,其余题目中:有两道题可判断两个选项是错误的,有一道可判断一个选项是错误的,还有一道因不理解题意只好乱猜,请求出该考生:
(Ⅰ)得50分的概率;
(Ⅱ)设该考生所得分数为ξ,求ξ的数学期望.
查看答案
如图,设A是单位圆和x轴正半轴的交点,P,Q是单位圆上两点,O是坐标原点,且manfen5.com 满分网,∠AOQ=α,α∈[0,π).
(Ⅰ)若点Q的坐标是manfen5.com 满分网,求manfen5.com 满分网的值;
(Ⅱ)设函数manfen5.com 满分网,求f(α)的值域.

manfen5.com 满分网 查看答案
定义域为R的函数manfen5.com 满分网的方程manfen5.com 满分网有5个不同的根x1、x2、x3、x4、x5,则x12+x22+x32+x42+x52等于    查看答案
函数y=kx+b,其中k,b(k≠0)是常数,其图象是一条直线,称这个函数为线性函数,对于非线性可导函数f(x),在点x附近一点x的函数值f(x),可以用如下方法求其近似代替值:f(x)≈f(x)+f'(x)(x-x),利用这一方法,manfen5.com 满分网的近似代替值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.