满分5 > 高中数学试题 >

某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收...

某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.
(Ⅰ)若建立函数模型制定奖励方案,试用数学语言表述公司对奖励函数模型的基本要求;
(Ⅱ)现有两个奖励函数模型:(1)y=manfen5.com 满分网;(2)y=4lgx-3.试分析这两个函数模型是否符合公司要求?
(Ⅰ)设奖励函数模型为y=f(x),根据“奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,说明在定义域上是增函数,且奖金不超过9万元,即f(x)≤9,同时奖金不超过投资收益的20%.即. (Ⅱ)根据(I)去判断,(1)对于函数模型,由一次函数的性质研究,是否满足第一,二两个条件,构造函数,由反比例函数性质研究是否满足第三个条件. (2)对于函数模型f(x)=4lgx-3,由对数函数的性质研究 是否满足第一,二两个条件,再用作差法研究是否满足第三个条件即:4lgx-3-<0,即4lgx-3<,所以恒成立. 【解析】 (Ⅰ)设奖励函数模型为y=f(x),则公司对函数模型的基本要求是: 当x∈[10,1000]时,①f(x)是增函数;②f(x)≤9恒成立;③恒成立.(3分) (Ⅱ)(1)对于函数模型: 当x∈[10,1000]时,f(x)是增函数,则. 所以f(x)≤9恒成立.(5分) 因为函数在[10,1000]上是减函数,所以. 从而,即不恒成立. 故该函数模型不符合公司要求.(8分) (2)对于函数模型f(x)=4lgx-3: 当x∈[10,1000]时,f(x)是增函数,则f(x)max=f(1000)=4lg1000-3=9. 所以f(x)≤9恒成立.(10分) 设g(x)=4lgx-3-,则. 当x≥10时,, 所以g(x)在[10,1000]上是减函数,从而g(x)≤g(10)=-1<0. 所以4lgx-3-<0,即4lgx-3<,所以恒成立. 故该函数模型符合公司要求.(13分)
复制答案
考点分析:
相关试题推荐
设A(x1,y1),B(x2,y2)是椭圆manfen5.com 满分网,(a>b>0)上的两点,已知向量manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),且manfen5.com 满分网,若椭圆的离心率manfen5.com 满分网,短轴长为2,O为坐标原点:
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
查看答案
如图,矩形ABCD和直角梯形BEFC所在平面互相垂直,∠BCF-90°,BE∥CF,CE⊥EF,AD=manfen5.com 满分网,EF=2.
(1)求异面直线AD与EF所成的角;
(2)当AB的长为何值时,二面角A-EF-C的大小为45°?

manfen5.com 满分网 查看答案
在一次数学考试中,共有10道选择题,每题均有四个选项,其中有且只有一个选项是正确的,评分标准规定:“每道题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有6道题是正确的,其余题目中:有两道题可判断两个选项是错误的,有一道可判断一个选项是错误的,还有一道因不理解题意只好乱猜,请求出该考生:
(Ⅰ)得50分的概率;
(Ⅱ)设该考生所得分数为ξ,求ξ的数学期望.
查看答案
如图,设A是单位圆和x轴正半轴的交点,P,Q是单位圆上两点,O是坐标原点,且manfen5.com 满分网,∠AOQ=α,α∈[0,π).
(Ⅰ)若点Q的坐标是manfen5.com 满分网,求manfen5.com 满分网的值;
(Ⅱ)设函数manfen5.com 满分网,求f(α)的值域.

manfen5.com 满分网 查看答案
定义域为R的函数manfen5.com 满分网的方程manfen5.com 满分网有5个不同的根x1、x2、x3、x4、x5,则x12+x22+x32+x42+x52等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.