满分5 > 高中数学试题 >

设全集U=R,集合A={x|x>2或x<-1},B={x|x>0},则(∁UA)...

设全集U=R,集合A={x|x>2或x<-1},B={x|x>0},则(∁UA)∩B=( )
A.(0,2]
B.(2,+∞)
C.(0,2)
D.(-∞,-1)
先根据全集为R,求出集合A的补集,然后求出集合A的补集与集合B的交集即可. 【解析】 由全集U=R,集合A={x|x>2或x<-1}, 得到∁UA={x|-1≤x≤2}, 则(∁UA)∩B={x|0<x≤2}=(0,2]. 故选A
复制答案
考点分析:
相关试题推荐
已知椭圆的两个焦点manfen5.com 满分网,且椭圆短轴的两个端点与F2构成正三角形.
(I)求椭圆的方程;
(Ⅱ)过点(1,0)且与坐标轴不平行的直线l与椭圆交于不同两点P、Q,若在x轴上存在定点E(m,0),使manfen5.com 满分网恒为定值,求m的值.
查看答案
已知三次函数f(x)=ax3+bx2+cx(a,b,c∈R).
(Ⅰ)若函数f(x)过点(-1,2)且在点(1,f(1))处的切线方程为y+2=0,求函数f(x)的解析式;
(Ⅱ)在(Ⅰ)的条件下,若对于区间[-3,2]上任意两个自变量的值x1,x2都有|f(x1)-f(x2)|≤t,求实数t的最小值;
(Ⅲ)当-1≤x≤1时,|f′(x)|≤1,试求a的最大值,并求a取得最大值时f(x)的表达式.
查看答案
已知数列{an}是首项为manfen5.com 满分网,公比manfen5.com 满分网的等比数列,设manfen5.com 满分网,数列{cn}满足cn=an•bn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若manfen5.com 满分网对一切正整数n恒成立,求实数m的取值范围.
查看答案
如图,在三棱锥P-ABC中,△PAB是等边三角形,D,E分别为AB,PC的中点.
(1)在BC边上是否存在一点F,使得PB∥平面DEF.
(2)若∠PAC=∠PBC=90°,证明:AB⊥PC;
(3)在(2)的条件下,若AB=2,AC=manfen5.com 满分网,求三棱锥P-ABC的体积.

manfen5.com 满分网 查看答案
某单位为绿化环境,移栽了甲、乙两种大树各2株、设甲、乙两种大树移栽的成活率分别为manfen5.com 满分网manfen5.com 满分网,且各株大树是否成活互不影响、求移栽的4株大树中:
(Ⅰ)至少有1株成活的概率;
(Ⅱ)两种大树各成活1株的概率.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.