满分5 > 高中数学试题 >

已知椭圆的左、右焦点分别为F1、F2,离心率,右准线方程为x=2. (1)求椭圆...

已知椭圆manfen5.com 满分网的左、右焦点分别为F1、F2,离心率manfen5.com 满分网,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且manfen5.com 满分网,求直线l的方程.
(1)由已知得,解得,由此能得到所求椭圆的方程. (2)由题意知F1(-1,0)、F2(1,0),①若直线l的斜率不存在, 则直线l的方程为x=-1,由得 设、,,这与已知相矛盾. ②若直线l的斜率存在,设直线直线l的斜率为k,则直线l的方程为y=k(x+1),设M(x1,y1)、N(x2,y2),联立,消元得(1+2k2)x2+4k2x+2k2-2=0.再由根与系数的关系进行求解. 【解析】 (1)由已知得, 解得 ∴∴所求椭圆的方程为 ( 2)由(1)得F1(-1,0)、F2(1,0) ①若直线l的斜率不存在,则直线l的方程为x=-1, 由得 设、, ∴,这与已知相矛盾. ②若直线l的斜率存在,设直线直线l的斜率为k,则直线l的方程为y=k(x+1), 设M(x1,y1)、N(x2,y2), 联立,消元得(1+2k2)x2+4k2x+2k2-2=0 ∴, ∴. 又∵ ∴ ∴ 化简得40k4-23k2-17=0 解得k2=1或k2=(舍去) ∴k=±1 ∴所求直线l的方程为y=x+1或y=-x-1
复制答案
考点分析:
相关试题推荐
已知数列{an}中,a1=5且an=2an-1+2n-1(n≥2且n∈N*).
(1)证明:数列manfen5.com 满分网为等差数列;
(2)求数列{an}的前n项和Sn
查看答案
如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,manfen5.com 满分网,M是线段B1D1的中点.
(Ⅰ)求证:BM∥平面D1AC;
(Ⅱ)求证:D1O⊥平面AB1C.

manfen5.com 满分网 查看答案
某校从参加某次“广州亚运”知识竞赛测试的学生中随机抽出60名学生,将其成绩(百分制)(均为整数)分成六段[40,50)[50,60)…[90,100)下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(Ⅲ)若从60名学生随机抽取2名,抽到的学生成绩在[40,70)记0分,在[70,100)记1分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望.

manfen5.com 满分网 查看答案
已知三角形ABC的三个顶点的直角坐标分别为A(4,3)、B(0,0)、C(c,0)
(1)若c=5,求sin∠A的值;
(2)若∠A为钝角,求c的取值范围.
查看答案
manfen5.com 满分网如图,⊙O的直径AB=6cm,P是AB延长线上的一点,过p点作⊙O的切线,切点为C,连接AC,若∠CPA=30°,PC=    cm. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.