满分5 > 高中数学试题 >

已知函数. (1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;...

已知函数manfen5.com 满分网
(1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;
(2)当a=1时,求f(x)在manfen5.com 满分网上的最大值和最小值;
(3)当a=1时,求证:对大于1的任意正整数n,都有manfen5.com 满分网
(1)对函数f(x)进行求导,令导函数大于等于0在[1,+∞)上恒成立即可求出a的范围. (2)将a=1代入函数f(x)的解析式,判断其单调性进而得到最大值和最小值. (3)先判断函数f(x)的单调性,令代入函数f(x)根据单调性得到不等式,令n=1,2,…代入可证. 【解析】 (1)∵ ∴ ∵函数f(x)在[1,+∞)上为增函数 ∴对x∈[1,+∞)恒成立, ∴ax-1≥0对x∈[1,+∞)恒成立,即对x∈[1,+∞)恒成立 ∴a≥1 (2)当a=1时,, ∴当时,f′(x)<0,故f(x)在上单调递减; 当x∈(1,2]时,f′(x)>0,故f(x)在x∈(1,2]上单调递增, ∴f(x)在区间上有唯一极小值点,故f(x)min=f(x)极小值=f(1)=0 又 ∵e3>16 ∴ ∴f(x)在区间上的最大值 综上可知,函数f(x)在上的最大值是1-ln2,最小值是0. (3)当a=1时,,, 故f(x)在[1,+∞)上为增函数. 当n>1时,令,则x>1,故f(x)>f(1)=0 ∴,即 ∴ ∴ ∴ 即对大于1的任意正整数n,都有
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的左、右焦点分别为F1、F2,离心率manfen5.com 满分网,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且manfen5.com 满分网,求直线l的方程.
查看答案
已知数列{an}中,a1=5且an=2an-1+2n-1(n≥2且n∈N*).
(1)证明:数列manfen5.com 满分网为等差数列;
(2)求数列{an}的前n项和Sn
查看答案
如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,manfen5.com 满分网,M是线段B1D1的中点.
(Ⅰ)求证:BM∥平面D1AC;
(Ⅱ)求证:D1O⊥平面AB1C.

manfen5.com 满分网 查看答案
某校从参加某次“广州亚运”知识竞赛测试的学生中随机抽出60名学生,将其成绩(百分制)(均为整数)分成六段[40,50)[50,60)…[90,100)下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(Ⅲ)若从60名学生随机抽取2名,抽到的学生成绩在[40,70)记0分,在[70,100)记1分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望.

manfen5.com 满分网 查看答案
已知三角形ABC的三个顶点的直角坐标分别为A(4,3)、B(0,0)、C(c,0)
(1)若c=5,求sin∠A的值;
(2)若∠A为钝角,求c的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.