满分5 > 高中数学试题 >

设全集U={0,1,2,3,4},集合A={1,2,3},集合B={2,3,4}...

设全集U={0,1,2,3,4},集合A={1,2,3},集合B={2,3,4},则A∩∁UB=( )
A.{1}
B.{0,1}
C.{0,1,2,3}
D.{0,1,2,3,4}
由全集U={0,1,2,3,4},集合A={1,2,3},集合B={2,3,4},知A∩∁UB={1,2,3}∩{0,1}={1}. 【解析】 ∵全集U={0,1,2,3,4}, 集合A={1,2,3}, 集合B={2,3,4}, ∴A∩∁UB={1,2,3}∩{0,1} ={1}. 故选A.
复制答案
考点分析:
相关试题推荐
如图,已知直线l:x=my+1过椭圆manfen5.com 满分网的右焦点F,抛物线:manfen5.com 满分网的焦点为椭圆C的上顶点,且直线l交椭圆C于A、B两点,点A、F、B在直线g:x=4上的射影依次为点D、K、E.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l交y轴于点M,且manfen5.com 满分网,当m变化时,探求λ12的值是否为定值?若是,求出λ12的值,否则,说明理由;
(Ⅲ)连接AE、BD,试证明当m变化时,直线AE与BD相交于定点manfen5.com 满分网

manfen5.com 满分网 查看答案
已知函数f(x)=ex+2x2-3x.
(Ⅰ)求证函数f(x)在区间[0,1]上存在唯一的极值点,并用二分法求函数取得极值时相应x的近似值(误差不超过0.2);(参考数据e≈2.7,manfen5.com 满分网,e0.3≈1.3)
(Ⅱ)当manfen5.com 满分网时,若关于x的不等式manfen5.com 满分网恒成立,试求实数a的取值范围.
查看答案
已知manfen5.com 满分网,数列{an}的前n项和为Sn,点manfen5.com 满分网在曲线y=f(x)上(n∈N*),且a1=1,an>0.
(1)求数列{an}的通项公式;
(2)数列{bn]的前n项和为Tn,且满足manfen5.com 满分网,b1=1,求证:数列manfen5.com 满分网是等差数列,并求数列{bn]的通项公式.
查看答案
如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分线段PC,且分别交AC、PC于D、E两点,又PB=BC,PA=AB.
(1)求证:PC⊥平面BDE;
(2)若点Q是线段PA上任一点,判断BD、DQ的位置关系,并证明你的结论;
(3)若AB=2,求三棱锥B-CED的体积.

manfen5.com 满分网 查看答案
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=manfen5.com 满分网,若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式.
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.