满分5 > 高中数学试题 >

已知椭圆和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点分别为A,...

已知椭圆manfen5.com 满分网和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点分别为A,B.
(1)(ⅰ)若圆O过椭圆的两个焦点,求椭圆的离心率e;
(ⅱ)若椭圆上存在点P,使得∠APB=90°,求椭圆离心率e的取值范围;
(2)设直线AB与x轴、y轴分别交于点M,N,求证:manfen5.com 满分网为定值.

manfen5.com 满分网
(Ⅰ)(ⅰ)由圆O过椭圆的焦点,知圆O:x2+y2=b2,由此能求出椭圆的离心率e;       (ⅱ)由∠APB=90°及圆的性质,可得,|OP|2=2b2≤a2,由此能求出椭圆离心率e的取值范围; (Ⅱ)设P(x,y),A(x1,y1),B(x2,y2),则,所以PA方程为:x1x+y1y=b2,PB方程为:x2x+y2y=b2.由此入手能得到为定值. 【解析】 (Ⅰ)(ⅰ)∵圆O过椭圆的焦点,圆O:x2+y2=b2, ∴b=c,∴b2=a2-c2=c2,∴a2=2c2, ∴.(3分) (ⅱ)由∠APB=90°及圆的性质,可得, ∴|OP|2=2b2≤a2,∴a2≤2c2 ∴,.(6分) (Ⅱ)设P(x,y),A(x1,y1),B(x2,y2),则 整理得xx+yy=x12+y12∵x12+y12=b2 ∴PA方程为:x1x+y1y=b2,PB方程为:x2x+y2y=b2. ∴x1x+y1y=x2x+y2y,∴, 直线AB方程为,即xx+yy=b2. 令x=0,得,令y=0,得, ∴, ∴为定值,定值是.(12分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=2x+alnx.
(1)若a<0证明:对于任意的两个正数x1,x2,总有manfen5.com 满分网≥f(manfen5.com 满分网)成立;
(2)若对任意的x∈[1,e],不等式:f(x)≤(a+3)x-manfen5.com 满分网x2恒成立,求a的取值范围.
查看答案
manfen5.com 满分网如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1B1C1均为60°,平面AA1C1C⊥平面ABCD.
(I)求证:BD⊥AA1
(II)求二面角D-AA1-C的余弦值;
(III)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.
查看答案
某射击小组有甲、乙两名射手,甲的命中率为manfen5.com 满分网,乙的命中率为P2,在射击比武活动中每人射击发两发子弹则完成一次检测,在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”;
(1)若manfen5.com 满分网,求该小组在一次检测中荣获“先进和谐组”的概率;
(2)计划在2011年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数ξ,如果Eξ≥5,求P2的取值范围.
查看答案
已知向量manfen5.com 满分网,向量manfen5.com 满分网manfen5.com 满分网
(1)化简f(x)的解析式,并求函数的单调递减区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知f(A)=2012,b=1,△ABC的面积为manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
设a>0,b>0,h=min{a,manfen5.com 满分网},其中min{x,y}表示x,y两数中最小的一个数,则h的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.