满分5 > 高中数学试题 >

以F1(0,-1),F2(0,1)为焦点的椭圆C过点. (Ⅰ)求椭圆C的方程; ...

以F1(0,-1),F2(0,1)为焦点的椭圆C过点manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点manfen5.com 满分网的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,请说明理由.
(I)椭圆过点P,则由椭圆的定义知2a=|PF1|+|PF2|=,由此可求出椭圆C的方程. (II)解法一:若直线l与x轴重合,则以AB为直径的圆是x2+y2=1;若直线l垂直于x轴时,则以AB为直径的圆是 由,由此可求出点T的坐标. 解法二:如果存在定点T(u,v)满足条件.若直线l垂直于x轴时,则以AB为直径的圆经过点(1,0);若直线l不垂直于x轴时,可设直线l:.由,整理得,然后利用根与系数的关系进行求解. 【解析】 (I)设椭圆方程为(a>b>0),∵椭圆过点P,则由椭圆的定义知 2a=|PF1|+|PF2|= 所以,,b2=a2-c2=1, 椭圆C的方程为. (II)解法一: 若直线l与x轴重合,则以AB为直径的圆是x2+y2=1; 若直线l垂直于x轴时,则以AB为直径的圆是 由解得,所以两圆相切于点(1,0). 因此,如果存在点T满足条件,则该点只能是(1,0) 下面证明T(1,0)就是所求的点. 若直线l垂直于x轴时, 则以AB为直径的圆经过点(1,0); 若直线l不垂直于x轴时,可设直线l: 由,整理得 记A(x1,y1)、B(x2,y2),则 又因为,, 则=(x1-1)(x2-1)+y1y2 == = 所以,TA⊥TB,即以AB为直径的圆恒过定点T(1,0), 故平面上存在一个定点T(1,0)满足题设条件 解法二:(I)由已知c=1,设椭圆方程为. 因为点P在椭圆上,则,解得a2=2, 所以椭圆方程为 (II)如果存在定点T(u,v)满足条件. 若直线l垂直于x轴时, 则以AB为直径的圆经过点(1,0); 若直线l不垂直于x轴时,可设直线l:. 由,整理得 记A(x1,y1)、B(x2,y2),则 ∵又因为,, 则=(x1-u)(x2-u)+(y1-v)(y2-v) = = = = 当且仅当恒成立时,以AB为直径的圆恒过点T(u,v).恒成立等价于, 解得u=1,v=0 所以当u=1,v=0时,无论直线l如何转动,以AB为直径的圆恒过定点T(1,0). 故平面上存在一个定点T(1,0)满足题目条件.
复制答案
考点分析:
相关试题推荐
定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(Ⅰ)证明:数列{2an+1}是“平方递推数列”,且数列{lg(2an+1)}为等比数列.
(Ⅱ)设(Ⅰ)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项公式及Tn关于n的表达式.
(Ⅲ)记manfen5.com 满分网,求数列{bn}的前n项之和Sn,并求使Sn>2010的n的最小值.
查看答案
manfen5.com 满分网如图,在多面体ABCD-A1B1C1D1中,上、下两个底面ABCD和A1B1C1D1互相平行,且都是正方形,DD1⊥底面ABCD,AB=2A1B1=2DD1=2a.
(Ⅰ)求异面直线AB1与DD1所成的角的余弦值;
(Ⅱ)已知F是AD的中点,求证:FB1⊥平面BCC1B1
(Ⅲ)在(Ⅱ)条件下,求二面角F-CC1-B的余弦值.
查看答案
某种项目的射击比赛,开始时射手在距离目标100m处射击,若命中则记3分,且停止射击.若第一次射击未命中,可以进行第二次射击,但需在距离目标150m处,这时命中目标记2分,且停止射击.若第二次仍未命中,还可以进行第三次射击,此时需在距离目标200m处,若第三次命中则记1分,并停止射击.若三次都未命中则记0分,并停止射击.已知射手甲在100m处击中目标的概率为manfen5.com 满分网,他的命中率与目标的距离的平方成反比,且各次射击都相互独立.
(Ⅰ)求射手甲在三次射击中命中目标的概率;
(Ⅱ)求射手甲在比赛中的得分不少于1分的概率.
查看答案
如图,已知O为△ABC的外心,a,b,c分别是角A、B、C的对边,且满足manfen5.com 满分网
(Ⅰ)证明:2a2=b2+c2; 
(Ⅱ)求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
manfen5.com 满分网,Q是x轴上一个动点,定点R(2,3),当点P在M所表示的平面区域内运动时,设|PQ|+|QR|的最小值构成的集合为S,则S中最大的数是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.