满分5 > 高中数学试题 >

东方庄家给游人准备了这样一个游戏,他制作了“迷尼游戏板”:在一块倾斜放置的矩形胶...

东方庄家给游人准备了这样一个游戏,他制作了“迷尼游戏板”:在一块倾斜放置的矩形胶合板上钉着一个形如“等腰三角形”的八行铁钉,钉子之间留有空隙作为通道,自上而下第1行2个铁钉之间有1个空隙,第2行3个铁钉之间有2个空隙,…,第8行9个铁钉之间有8个空隙(如图所示).东方庄家的游戏规则是:游人在迷尼板上方口放人一球,每玩一次(放入一球就算玩一次)先付给庄家2元.若小球到达①②③④号球槽,分别奖4元、2元、0元、-2元.(一个玻璃球的滚动方式:通过第1行的空隙向下滚动,小球碰到第二行居中的铁钉后以相等的概率滚入第2行的左空隙或右空隙.以后小球按类似方式继续往下滚动,落入第8行的某一个空隙后,最后掉入迷尼板下方的相应球槽内).恰逢周末,某同学看了一个小时,留心数了数,有80人次玩.试用你学过的知识分析,这一小时内庄家是赢是赔;通过计算,你想到了什么?

manfen5.com 满分网
游人每玩一次,设东方庄家获利为随机变量ξ(元);游人每放一球,小球落入球槽,相当于做7次独立重复试验,设这个小球落入铁钉空隙从左到右的次序为随机变量η+1,则η~B(7,),利用概率公式即可求解. 【解析】 游人每玩一次,设东方庄家获利为随机变量ξ(元);游人每放一球,小球落入球槽,相当于做7次独立重复试验,设这个小球落入铁钉空隙从左到右的次序为随机变量η+1,则η~B(7,). 因为P(ξ=-4)=P(η=0或η=7)=P(η=0)+P(η=7)=+= P(ξ=-2)=P(η=1或η=6)=P(η=1)+P(η=6)=+= P(ξ=0)=P(η=2或η=5)=P(η=2)+P(η=5)=+= P(ξ=2)=P(η=3或η=4)=P(η=3)+P(η=4)=+= 2+Eξ=2+(-4)×+(-2)×+0×+2×=2+, 一小时内有80人次玩.刚东方庄家通常获纯利为(2+×)80=225(元) 答:庄家当然是赢家!我们应当学会以所学过的知识为武器,劝说人们不要被这类骗子的骗术所迷惑.        (12分)
复制答案
考点分析:
相关试题推荐
袋中装有m个红球和n个白球,m≥n≥2,这些红球和白球除了颜色不同以外,其余都相同.从袋中同时取出2个球.
(1)若取出是2个红球的概率等于取出的是一红一白的2个球的概率的整数倍,试证m必为奇数;
(2)在m,n的数组中,若取出的球是同色的概率等于不同色的概率,试求失和m+n≤40的所有数组(m,n).
查看答案
在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较.在试制某种牙膏新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验.用ξ表示所选用的两种不同的添加剂的芳香度之和.
(Ⅰ)写出ξ的分布列;(以列表的形式给出结论,不必写计算过程)
(Ⅱ)求ξ的数学期望Eξ.(要求写出计算过程或说明道理)
查看答案
关于二项式(x-1)2005有下列命题:
①该二项展开式中非常数项的系数和是1;
②该二项展开式中第六项为C20056x1999;  
③该二项展开式中系数最大的项是第1002项;
④当x=2006时,(x-1)2005除以2006的余数是2005.
其中正确命题的序号是    .(注:把你认为正确的命题序号都填上) 查看答案
某幢楼从二楼到三楼的楼梯共11级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用7步走完,则上楼梯的方法有    种. 查看答案
一射手对靶射击,直到第一次中靶为止.他每次射击中靶的概率是 0.9,他有3颗弹子,射击结束后尚余子弹数目ξ的数学期望Eξ=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.