满分5 > 高中数学试题 >

如图:在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面A...

如图:在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2.
(I)证明:BC⊥平面AMN;
(II)求三棱锥N-AMC的体积;
(III)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.

manfen5.com 满分网
(I)要证线与面垂直,只要证明线与面上的两条相交线垂直,找面上的两条线,根据四边形是一个菱形,从菱形出发找到一条,再从PA⊥平面ABCD,得到结论. (II)要求三棱锥的体积,首先根据所给的体积确定用哪一个面做底面,会使得计算简单一些,选择三角形AMC,做出底面面积,利用体积公式得到结果. (III)对于这种是否存在的问题,首先要观察出结论,再进行证明,根据线面平行的判定定理,利用中位线确定线与线平行,得到结论. 【解析】 (Ⅰ)证明:∵ABCD为菱形, ∴AB=BC 又∠ABC=60°, ∴AB=BC=AC, 又M为BC中点,∴BC⊥AM 而PA⊥平面ABCD,BC⊂平面ABCD,∴PA⊥BC 又PA∩AM=A,∴BC⊥平面AMN (II)∵ 又PA⊥底面ABCD,PA=2,∴AN=1 ∴三棱锥N-AMC的体积S△AMC•AN = (III)存在点E, 取PD中点E,连接NE,EC,AE, ∵N,E分别为PA,PD中点, ∴ 又在菱形ABCD中, ∴,即MCEN是平行四边形 ∴NM∥EC, 又EC⊂平面ACE,NM⊄平面ACE ∴MN∥平面ACE, 即在PD上存在一点E,使得NM∥平面ACE, 此时.
复制答案
考点分析:
相关试题推荐
已知函数f (x)=manfen5.com 满分网sinxcosx-2cos2x+1.
(Ⅰ)求f (manfen5.com 满分网);
(Ⅱ)求函数f (x)图象的对称轴方程.
查看答案
给出下列四个命题:
①若集合A,B满足A∩B=A,则A⊆B;
②给定命题p,q,若“p∨q”为真,则“p∧q”为真;
③设a,b,m∈R,若a<b,则am2<bm2
④若直线l1:ax+y+1=0与直线l2:x-y+1=0垂直,则a=1.其中真命题的个数是     .(写出所有真命题的个数) 查看答案
已知有公共焦点的椭圆与双曲线中心为原点,焦点在x轴上,左右焦点分别为F1,F2,且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,双曲线的离心率的取值范围为(1,2).则该椭圆的离心率的取值范围是    查看答案
已知程序框图如图所示,则执行该程序后输出的结果是   
manfen5.com 满分网 查看答案
某校为了解高三同学寒假期间学习情况,抽查了100名同学,统计他们每天平均学习时间,绘成频率分布直方图(如图).则这100名同学中学习时间在6~8小时内的同学为    人.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.