满分5 > 高中数学试题 >

设a>0,函数f(x)=x2+a|lnx-1| (1)当a=1时,求曲线y=f(...

设a>0,函数f(x)=x2+a|lnx-1|
(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;
(2)当a=3时,求函数f(x)的单调性;
(3)当x∈[1,+∞)时,求函数f(x)的最小值.
(1)将a=1代入,对函数f(x)进行求导得到切线的斜率k=f′(1),切点为(1,2),根据点斜式即可写出切线方程; (2)由题意知当0<x≤e时,,f(x)在(1,e]内单调性.当x≥e时,恒成立,故f(x)在[e,+∞)内单调递增.由此可知f(x)的单调增区间和单调递减区间; (3)分x≥e和x<e两种情况讨论.分别对函数f(x)进行求导,根据导函数的正负判断出函数f(x)的单调性后可得到答案. 解(1)当a=1时,f(x)=x2+|lnx-1| 令x=1得f(1)=2,f'(1)=1,所以切点为(1,2),切线的斜率为1, 所以曲线y=f(x)在x=1处的切线方程为:x-y+1=0. (2)当a=2时,f(x)=x2+3|lnx-1| = 当0<x≤e时,, f(x)在(0,]内单调递减,在(,e]上单调递增; 当x≥e时,恒成立, 故f(x)在(0,]内单调递减,在(,+∞)上单调递增; (3)①当x≥e时,f(x)=x2+alnx-a,(x≥e) ∵a>0, ∴f(x)>0恒成立. ∴f(x)在[e,+∞)上增函数. 故当x=e时,ymin=f(e)=e2 ②当1≤x<e时,f(x)=x2-alnx+1, (1≤x<e) (i)当 ,即0<a≤2时,f'(x)在x∈(1,e)时为正数, 所以f(x)在区间[1,e)上为增函数. 故当x=1时,ymin=1+a,且此时f(1)<f(e) (ii)当 ,即2<a<2e2时, f'(x)在 时为负数,在间 时为正数 所以f(x)在区间 上为减函数,在 上为增函数 故当 时,, 且此时 (iii)当 ;即a≥2e2时, f'(x)在x∈(1,e)时为负数, 所以f(x)在区间[1,e]上为减函数, 当x=e时,ymin=f(e)=e2. 综上所述,当a≥2e2时,f(x)在x≥e时和1≤x≤e时的最小值都是e2. 所以此时f(x)的最小值为f(e)=e2; 当2<a<2e2时,f(x)在x≥e时的最小值为 , 而 , 所以此时f(x)的最小值为 . 当0<a≤2时,在x≥e时最小值为e2,在1≤x<e时的最小值为f(1)=1+a, 而f(1)<f(e),所以此时f(x)的最小值为f(1)=1+a 所以函数y=f(x)的最小值为 .
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x2-1与函数g(x)=alnx(a≠0).
(I)若f(x),g(x)的图象在点(1,0)处有公共的切线,求实数a的值;
(II)设F(x)=f(x)-2g(x),求函数F(x)的极值.
查看答案
已知数列{an}是首项为manfen5.com 满分网,公比manfen5.com 满分网的等比数列,设manfen5.com 满分网,数列{cn}满足cn=an•bn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若manfen5.com 满分网对一切正整数n恒成立,求实数m的取值范围.
查看答案
已知抛物线C的顶点在原点,焦点为F(0,1).
(Ⅰ)求抛物线C的方程;
(Ⅱ)在抛物线C上是否存在点P,使得过点P的直线交C于另一点Q,满足PF⊥QF,且PQ与C在点P处的切线垂直?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图:在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2.
(I)证明:BC⊥平面AMN;
(II)求三棱锥N-AMC的体积;
(III)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.

manfen5.com 满分网 查看答案
已知函数f (x)=manfen5.com 满分网sinxcosx-2cos2x+1.
(Ⅰ)求f (manfen5.com 满分网);
(Ⅱ)求函数f (x)图象的对称轴方程.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.