满分5 > 高中数学试题 >

设函数f(x)=x2-2tx+4t3+t2-3t+3,其中x∈R,t∈R,将f(...

设函数f(x)=x2-2tx+4t3+t2-3t+3,其中x∈R,t∈R,将f(x)的最小值记为g(t).
(1)求g(t)的表达式;
(2)讨论g(t)在区间[-1,1]内的单调性;
(3)若当t∈[-1,1]时,|g(t)|≤k恒成立,其中k为正数,求k的取值范围.
(1)求出f′(x)=2x-2t,当x>t时和当x<t时函数的增减性即可得到f(x)的最小值为f(t)=g(t)算出即可 (2)求出g(t)=0求出函数驻点,在[-1,1]上讨论函数的单调性即可; (3)要讨论,|g(t)|≤k恒成立即g(t)的最大值≤k,求出g(t)的最大值列出不等式求出k的范围即可. 【解析】 (1)根据题意得f′(x)=2x-2t=0得x=t,当x<t时,f′(x)<0,函数为减函数;当x>t时,f′(x)>0,函数为减函数.则f(x)的最小值g(t)=f(t)=4t3-3t+3; (2)求出g′(t)=12t2-3=0解得t=, 当-1≤t<或≤t≤1时,g′(t)>0,函数为增函数; 当-≤t≤时,g′(t)<0,函数为减函数.所以函数的递增区间为[-1,-]与[,1],递减区间为[-,); (3)由(2)知g(t)的递增区间为[-1,-]与[,1],递减区间为[-,); 又g(1)=4,g(-)=4 ∴函数g(t)的最大值为4, 则g(t)≤4. ∵当t∈[-1,1]时,|g(t)|≤k恒成立, ∴k≥4
复制答案
考点分析:
相关试题推荐
成都七中外某面馆进行促销活动,促销方案是:顾客每消费10元,便可获得奖券一张,每张奖券中奖的概率为1/5,若中奖,则面馆返还顾客现金2元.某同学在该面馆消费了34元,得到了3张奖券.
(1)求面馆恰好返还该同学2元现金的概率;
(2)求面馆至少返还该同学现金2元的概率.
查看答案
在三棱锥A-BCD中,AD⊥面BCD,BD⊥CD,AD=BD=2,manfen5.com 满分网,E、F分别是AC和BC的中点.
(1)求三棱锥E-CDF的体积;
(2)求二面角E-DF-C的大小(用反三角函数值表示).

manfen5.com 满分网 查看答案
已知manfen5.com 满分网=(cosx,sinx),manfen5.com 满分网=(cosx,2manfen5.com 满分网cosx-sinx),f(x)=manfen5.com 满分网manfen5.com 满分网+|manfen5.com 满分网|,x∈(manfen5.com 满分网,π].
(Ⅰ)求f(x)的最大值;
(Ⅱ)记△ABC的内角A、B、C的对边分别为a、b、c,若f(B)=-1,a=c=2,求manfen5.com 满分网manfen5.com 满分网
查看答案
给出以下结论:
(1)若x,y∈R,x2+y2=0,则x=0或y=0的否命题是假命题;
(2)若非零向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网两两成的夹角均相等,则夹角为0°或120°;
(3)实数x,y满足4x2-5xy+4y2=5,设S=x2+y2,则manfen5.com 满分网+manfen5.com 满分网=manfen5.com 满分网
(4)函数f(x)=manfen5.com 满分网为周期函数,且最小正周期T=2π.
其中正确的结论的序号是:    (写出所有正确的结论的序号) 查看答案
过双曲线manfen5.com 满分网(a>0,b>0)的一个焦点F引它的渐近线的垂线,垂足为M,延长FM交y轴于E,若|FM|=|ME|.则该双曲线的离心率为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.