满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,PA⊥底面ABCD...

如图,在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,PA⊥底面ABCD,点M是棱PC的中点,AM⊥平面PBD.
(1)求PA的长;
(2)求棱PC与平面AMD所成角的正弦值.

manfen5.com 满分网
(1)先建立空间直角坐标系,写出各点的坐标,由平面PBD,==0,可得P的竖坐标, 即得到PA的长. (2)先求出平面AMD的一个法向量n,与法向量n的夹角的余弦值就等于与平面AMD夹角的正弦值. 【解析】 如图,以A为坐标原点,AB,AD,AP分别为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),P(0,0,a). 因为M是PC中点,所以M点的坐标为(,,), 所以=(,,),=(-1,1,0),=(-1,0,a). (1)因为平面PBD,所以==0.即 -+=0,所以a=1,即PA=1.(4分) (2)由=(0,1,0),=(,,), 可求得平面AMD的一个法向量n=(-1,0,1). 又=(-1,-1,1).所以cos<n,>===,故sin<n,>=, 所以,PC与平面AMD所成角的正弦值为.(10分)
复制答案
考点分析:
相关试题推荐
若两条曲线的极坐标方程分别为p=l与p=2cos(θ+manfen5.com 满分网),它们相交于A,B两点,求线段AB的长.
查看答案
manfen5.com 满分网如图,△ABC的外接圆的切线AE与BC的延长线相交于点E,∠BAC的平分线与BC交于点D.求证:ED2=EB•EC.
查看答案
已知manfen5.com 满分网
(1)求f(x)的定义域;
(2)求f(x)的最大值和最小值;
(3)若manfen5.com 满分网,如何由(2)的结论求g(x)的最大值和最小值.
查看答案
设f(x)=x3,等差数列{an}中a3=7,a1+a2+a3=12,记Sn=manfen5.com 满分网,令bn=anSn,数列manfen5.com 满分网的前n项和为Tn
(Ⅰ)求{an}的通项公式和Sn
(Ⅱ)求证:manfen5.com 满分网
(Ⅲ)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.
查看答案
设圆C1:x2+y2-10x-6y+32=0,动圆C2:x2+y2-2ax-2(8-a)y+4a+12=0,
(Ⅰ)求证:圆C1、圆C2相交于两个定点;
(Ⅱ)设点P是椭圆manfen5.com 满分网上的点,过点P作圆C1的一条切线,切点为T1,过点P作圆C2的一条切线,切点为T2,问:是否存在点P,使无穷多个圆C2,满足PT1=PT2?如果存在,求出所有这样的点P;如果不存在,说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.