满分5 > 高中数学试题 >

对于函数①f(x)=|x+2|,②f(x)=|x-2|,③f(x)=cos(x-...

对于函数①f(x)=|x+2|,②f(x)=|x-2|,③f(x)=cos(x-2),判断如下两个命题的真假:命题甲:f(x+2)是偶函数;命题乙:f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数;能使命题甲、乙均为真的所有函数的序号是    
对于题中所给的3个函数,它们的定义域均为实数集R;于是可以先求出函数f(x+2)的解析式,①中有f(x+2)=|x+4|,②中有f(x+2)=|x|,③中有f(x+2)=cosx,然后判断f(x+2)的奇偶性;再由函数f(x)的图象可得出f(x)的单调性来. 【解析】 ①函数f(x)=|x+2|,则有f(x+2)=|x+4|,显然这不是偶函数,因此①中的函数不符合要求; ②函数f(x)=|x-2|,则有f(x+2)=|x|,f(x+2)是偶函数,又由函数f(x)的图象可知f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数,所以②符合要求; ③中函数f(x)=cos(x-2),则有f(x+2)=cosx,是偶函数,但是它在(-∞,2)上没有单调性;因此答案应为②. 故答案为②.
复制答案
考点分析:
相关试题推荐
设f(x)=manfen5.com 满分网x3+manfen5.com 满分网ax2+2bx+c,若当x∈(0,1]时,f(x)取得极大值,x∈(1,2]时,f(x)取得极小值,则manfen5.com 满分网的取值范围是    查看答案
已知三条不重合的直线两个不重合的平面,有下列命题:
①若m||n,n⊂α,则m||α;②若l⊥α,m⊥β,且l||m,则α||β;③若m⊂α,n⊂α,m||β,n||β,则α||β;④若α⊥β,α∩β=m,n⊂β,n⊥m,则n⊥α.其中正确的序号为    查看答案
函数manfen5.com 满分网是幂函数,且在x∈(0,+∞)上是减函数,则实数m=    查看答案
函数f(x)=lg(x2-2ax+1+a)在区间(-∞,1]上单调递减,则实数a的取值范围是    查看答案
设p:|4x-3|≤1;q:(x-a)(x-a-1)≤0,若p是q的充分不必要条件,则实数a的取值范围是    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.