满分5 > 高中数学试题 >

等差数列{an}的前n项和Sn,若a3+a7-a10=8,a11-a4=4,则S...

等差数列{an}的前n项和Sn,若a3+a7-a10=8,a11-a4=4,则S13等于( )
A.152
B.154
C.156
D.158
利用等差数列的通项公式,结合已知条件列出关于a1,d的方程组,求出a1、d,代入等差数列的前n项和公式,即可求出s13;或者将a3+a7-a10=8,a11-a4=4两式相加,利用等差数列的性质进行求解. 【解析】 解法1:∵{an}为等差数列,设首项为a1,公差为d, ∴a3+a7-a10=a1+2d+a1+6d-a1-9d=a1-d=8①;a11-a4=a1+10d-a1-3d=7d=4②, 联立①②,解得a1=,d=; ∴s13=13a1+d=156. 解法2:∵a3+a7-a10=8①,a11-a4=4②, ①+②可得a3+a7-a10+a11-a4=12, ∵根据等差数列的性质a3+a11=a10+a4, ∴a7=12, ∴s13=×13=13a7=13×12=156. 故选C.
复制答案
考点分析:
相关试题推荐
设z=1+i(i是虚数单位),则manfen5.com 满分网=( )
A.-1-i
B.-1+i
C.1-i
D.1+i
查看答案
已知全集U=|1,2,3,4,5|,且A={2,3,4},B={1,2},则A∩(∁∪B)等于( )
A.{2}
B.{5}
C.{3,4}
D.{2,3,4,5}
查看答案
已知函数f(x)=alnx-bx2图象上一点P(2,f(2))处的切线方程为y=-3x+2ln2+2.
(Ⅰ)求a,b的值;
(Ⅱ)若方程f(x)+m=0在manfen5.com 满分网内有两个不等实根,求m的取值范围(其中e为自然对数的底数);
(Ⅲ)令g(x)=f(x)-kx,若g(x)的图象与x轴交于A(x1,0),B(x2,0)(其中x1<x2),AB的中点为C(x,0),求证:g(x)在x处的导数g′(x)≠0.
查看答案
已知m∈R,研究函数manfen5.com 满分网的单调区间.
查看答案
已知:正方体ABCD-A1B1C1D1,AA1=2,E为棱CC1的中点.
(1)求证:B1D1⊥AE;
(2)求证:AC∥平面B1DE;
(3)(文)求三棱锥A-BDE的体积.
(理)求三棱锥A-B1DE的体积.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.